
Lua User Manual
Rev. 2023-10-10

I Contents

Contents
Getting started 1

Events 2
Properties . 2
Available types . 2
Examples . 3

Devices 6
Properties . 6
Methods . 6
Commands . 8
Examples . 8

Scenes 10
Properties . 10
Methods . 11
Commands . 13
Examples . 13

Automations 15
Properties . 15
Methods . 16
Examples . 17

Rooms 18
Properties . 18
Methods . 19
Examples . 20

Floors 21
Properties . 21
Methods . 21
Examples . 22

DateTime 23
Methods . 23
Examples . 24

Variables 26
Types . 26
Methods . 26
Examples . 27

Timers 28
Methods . 28
Examples . 29

Statistics 31
Methods . 31
Units . 31
Examples . 32

Sunrise and Sunset 33
Methods . 33

II Contents

Examples . 33

System 35
Methods . 35
Examples . 35

Weather 36
Properties . 36
Methods . 36
Weather Object . 36
Methods . 36
Examples . 38

Notifications 39
Methods . 39
Examples . 40

Modbus Client 41
Methods . 41
Examples . 45

Libraries - JSON 47
Methods . 47
Example . 47

Libraries - XML 49
Methods . 49
Example . 49

Libraries - hash 51
Methods . 51
Example . 51

Utilities 52
Functions . 52
Deprecated methods . 53

Utilities - colorspace conversion 54
Representation . 54
Gamma correction . 56
Color space conversion . 58

Utilities - ctype 61
Functions . 61

Utilities - math 63
Functions . 63

Utilities - sequences 65
Functions . 65

Utilities - strings 67
Functions . 67

Utilities - tables 72
Functions . 72
Iterative functions - intro . 73

III Contents

Iterative functions . 75

Utilities - time 79
Methods . 79

Utilities - URL manipulation 80
Percent-encoding . 80
URL parsing . 81

HTTP Client 84
Properties . 84
Methods . 85
Examples . 88

HTTP Server 91
Properties . 91
Methods . 91

HttpServerRequest 93
Methods . 93

HttpServerResponse 94
Methods . 94
Examples . 94

ICMP Ping 97
Methods . 97
Examples . 98

Mqtt Client 100
Properties . 100
Methods . 100
Examples . 102

Wake On Lan 104
Properties . 104
Methods . 104
Examples . 104

EnergyCenter - FlowMonitor 105
Methods . 105
Properties . 105
Examples . 107

EnergyCenter - EnergyPrices 109
Methods . 109
Properties . 111

EnergyCenter - EnergyStorage 112
Methods . 112
Properties . 112
Examples . 113

EnergyCenter - EnergyConsumption 114
Methods . 114
Properties . 114

IV Contents

EnergyCenter - EnergyProduction 116
Methods . 116
Properties . 116

WTP - AQSensor 118
Properties . 118

WTP - BlindController 121
Properties . 121
Commands . 124
Examples . 125

WTP - Button 126
Properties . 126
Examples . 128

WTP - CO2Sensor 129
Properties . 129

WTP - Dimmer 131
Properties . 131
Commands . 132
Examples . 133

WTP - EnergyMeter 135
Properties . 135
Commands . 137
Examples . 137

WTP - FloodSensor 138
Properties . 138
Examples . 139

WTP - HumiditySensor 141
Properties . 141

WTP - IAQSensor 143
Properties . 143

WTP - LightSensor 146
Properties . 146

WTP - MotionSensor 148
Properties . 148
Commands . 150
Examples . 150

WTP - OpeningSensor 152
Properties . 152
Examples . 153

WTP - PressureSensor 155
Properties . 155

WTP - RadiatorActuator 157
Properties . 157
Commands . 159

V Contents

Examples . 159

WTP - Relay 160
Properties . 160
Commands . 162
Examples . 163

WTP - RGB Controller 164
Properties . 164
Commands . 166
Examples . 167

WTP - SmokeSensor 169
Properties . 169
Commands . 171
Examples . 171

WTP - TemperatureRegulator 173
Properties . 173
Commands . 175
Examples . 176

WTP - TemperatureSensor 177
Properties . 177

WTP - Throttle 179
Properties . 179
Commands . 181
Examples . 181

WTP - TwoStateInputSensor 182
Properties . 182

WTP - FanControl 184
Properties . 184
Commands . 186

TECH - CommonHeatBuffer 187
Properties . 187

TECH - CH PumpAdditional 189
Properties . 189

TECH - CommonDHW 191
Properties . 191
Examples . 193

TECH - DHW PumpAdditional 194
Properties . 194

TECH - FloorPumpAdditional 196
Properties . 196

TECH - HeatPump 198
Properties . 198
Commands . 200

VI Contents

TECH - HumiditySensor 202
Properties . 202

TECH - PelletBoiler 204
Properties . 204
Examples . 207

TECH - PelletCHMain 208
Properties . 208
Examples . 209

TECH - ProtectPumpAdditional 210
Properties . 210

TECH - RelayAdditional 212
Properties . 212

TECH - Relay 214
Properties . 214
Commands . 215
Examples . 216

TECH - TemperatureRegulator 217
Properties . 217
Commands . 219
Examples . 220

TECH - TemperatureSensor 221
Properties . 221

TECH - TwoStateInputSensor 223
Properties . 223

TECH - Valve 225
Properties . 225
Examples . 227

TECH - Ventilation 228
Properties . 228
Commands . 232

Modbus - Alpha-Innotec - Heat Pump 233
Properties . 233

Modbus - Alpha-Innotec - Main DHW 237
Properties . 237

Modbus - Alpha Innotec - Temperature Sensor 239
Properties . 239

Modbus - Eastron SDM630 - Energy Meter 241
Properties . 241

Modbus - EcoAir - Heat Pump 248
Properties . 248
Commands . 250

VII Contents

Modbus - EcoAir - Main DHW 251
Properties . 251
Examples . 252

Modbus - EcoGeo - Heat Pump 253
Properties . 253
Commands . 255

Modbus - EcoGeo - Main DHW 256
Properties . 256
Examples . 257

Modbus - Galmet Prima - Heat Pump 258
Properties . 258

Modbus - Galmet Prima - Main DHW 261
Properties . 261
Examples . 262

Modbus - Galmet Prima - Temperature Sensor 263
Properties . 263

Modbus - GoodWe MT/SMT - Inverter 265
Properties . 265
Commands . 268

Modbus - GoodWe SDT/MS/DNS/XS - Inverter 269
Commands . 271

Modbus - Heatcomp - Heat Pump 272
Properties . 272

Modbus - Heatcomp - Main DHW 275
Properties . 275
Examples . 276

Modbus - HeatEco - Heat Pump 277
Properties . 277

Modbus - HeatEco - Main DHW 281

Modbus - Huawei SUN2000 - Battery 283
Properties . 283

Modbus - Huawei SUN2000 - Energy Meter 285
Properties . 285

Modbus - Huawei SUN2000 - Inverter 287
Properties . 287
Commands . 289

Modbus - Itho - Heat Pump 290
Properties . 290

Modbus - Itho - Main DHW 294
Properties . 294

VIII Contents

Modbus - Itho - Temperature Sensor 296
Properties . 296

Modbus - Kaisai KHC - Heat Pump 298
Properties . 298

Modbus - Kaisai KHC - Main DHW 301
Properties . 301
Examples . 302

Modbus - Kaisai KHC - Temperature Sensor 303
Properties . 303

Modbus - Mitsubishi Ecodan - Heat Pump 305
Properties . 305

Modbus - Mitsubishi Ecodan - Main DHW 308
Properties . 308

Modbus - Remeha Elga ACE - Heat Pump 310
Properties . 310
Commands . 312

Modbus - Remeha Elga ACE - Temperature Sensor 313
Properties . 313

Modbus - SolarEdge with MTTP Extension Model - Inverter 315
Properties . 315

Modbus - SolarEdge - Inverter 318
Properties . 318

Modbus - Solax X1 - Battery 320
Properties . 320
Commands . 321
Examples . 322

Modbus - Solax X1 - Inverter 323
Properties . 323

Modbus - Solax X3 - Battery 326
Properties . 326
Commands . 327
Examples . 328

Modbus - Solax X3 - Inverter 329
Properties . 329

Modbus - Solis - Inverter 333
Properties . 333

Modbus - P1 Energy Meter 336
Properties . 336

Virtual - Thermostat 339
Properties . 339
Commands . 343

IX Contents

Examples . 344

Virtual - Thermostat Output Group 346
Properties . 346
Commands . 347
Examples . 347

Virtual - Relay Integrator 349
Properties . 349
Examples . 350

Virtual - Blind Controller Integrator 351
Properties . 351
Examples . 352

Virtual - CustomDevice 353
Methods . 353
Properties . 353
Commands . 354

Virtual - CustomDevice - Lua code 356

Virtual - CustomDevice - Controls 357
Methods . 357

Virtual - CustomDevice - Controls - Text 359
Properties . 359
Commands . 360

Virtual - CustomDevice - Controls - Button 361
Properties . 361
Commands . 361

Virtual - CustomDevice - Controls - Switcher 363
Properties . 363
Commands . 363

Virtual - CustomDevice - Controls - Progress Bar 365
Properties . 365
Commands . 365

Virtual - CustomDevice - Controls - Slider 367
Properties . 367
Commands . 368

Virtual - CustomDevice - Controls - ComboBox 369
Properties . 369
Commands . 370
Examples . 371

Virtual - Heat Pump Manager 376
Properties . 376
Commands . 378
Examples . 379

Virtual - Gate 381
Properties . 381

X Contents

Commands . 382
Examples . 383

Virtual - Wicket 384
Properties . 384
Commands . 385
Examples . 385

SBUS - AnalogInput 386
Properties . 386

SBUS - Button 388
Properties . 388
Examples . 389

SBUS - CO2Sensor 391
Properties . 391

SBUS - Dimmer 393
Properties . 393
Commands . 394
Examples . 395

SBUS - HumiditySensor 397
Properties . 397

SBUS - IAQSensor 399
Properties . 399

SBUS - LightSensor 402
Properties . 402

SBUS - MotionSensor 404
Properties . 404
Commands . 406
Examples . 406

SBUS - PressureSensor 408
Properties . 408

SBUS - Relay 410
Properties . 410
Commands . 411
Examples . 412

SBUS - RGB Controller 413
Properties . 413
Commands . 415
Examples . 416

SBUS - TemperatureRegulator 418
Properties . 418
Commands . 420
Examples . 421

SBUS - TemperatureSensor 422
Properties . 422

XI Contents

SBUS - TwoStateInputSensor 424
Properties . 424

SBUS - Blind Controller 426
Properties . 426
Commands . 428
Examples . 429

AlarmSystem - Satel - AlarmZone 430
Properties . 430
Examples . 432

AlarmSystem - Satel - TwoStateInputSensor 433
Properties . 433

AlarmSystem - Satel - TwoStateOutput 435
Properties . 435
Examples . 437

Lora - FloodSensor 438
Properties . 438
Examples . 439

Lora - HumiditySensor 441
Properties . 441

Lora - OpeningSensor 443
Properties . 443
Examples . 444

Lora - Relay 446
Properties . 446
Commands . 447
Examples . 448

Lora - TemperatureSensor 449
Properties . 449

Lora - TwoStateInputSensor 451
Properties . 451

System Module - WTP, SBus or Modbus Extenders 453
Properties . 453

System Module - Lora Gateway 456
Properties . 456

System Module - WTP, SBus or Modbus Transceiver 458
Properties . 458

1 Getting started

Getting started
Lua is a lightweight, high-level, multi-paradigm programming language designed
primarily for embedded use in applications and extending their functionality.

The language has extensive documentation on its official site here.

It allows you to capture events in our system and perform specific actions or
sequences using simple references to specific elements of the application, mainly in
the form of automations and scenes popularly called scripts.
Managing (adding, removing, editing) scenes and automations is done via REST API
or a web application served through the central unit server.

In scripts, you must not use blocking functions, e.g. delay or long-acting loops, the
script should execute as soon as possible or it will block execution queue for other
scripts.

https://www.lua.org/manual/
https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

2 Events

Events
Event is an action or occurrence done by device, automation, scene or user in
system that may be handled by user in automations.

If events occurs, system will trigger run-cycle through all lua automations which are
not banned and enabled in order to perform user defined actions.

It will contain info only when executing in context of automation (its empty in scenes
/ deferred actions context). You can refer to it using event global scope object.

Properties
• type (string)

Type of event

• details (string)

More detailed info about event eg. if event refers to device state change then
details will contain name of attribute that was recently changed.

Available types
• application_initialized

Occurs once at application start, can be used as initializator of automations etc.

• device_state_changed

Occurs when one of device attribute was changed by user, automation or scene.

• minute_changed

Occurs cyclically once per minute.

• scene_activated

Occurs on scene activation.

• scene_state_changed

Occurs when one of scene attribute was changed by user, automation or scene.

• scene_failed

Occurs when scene failed eg. due to syntax error.

• automation_state_changed

Occurs when one of automation attribute was changed by user, automation or
scene.

• automation_failed

Occurs when automation failed eg. due to syntax error.

• lua_timer_elapsed

Occurs when lua timer has elapsed after start for specific time.

3 Events

• sunrise

Occurs once a day at sunrise.

• sunset

Occurs once a day at sunset.

• mqtt_client_connected

Occurs when Mqtt client connects to broker (when CONACK received).

• mqtt_client_disconnected

Occurs when Mqtt client disconnects from broker e.g. due to network error

• mqtt_client_message_received

Occurs when Mqtt client receives message at subscribed topic.

• http_client_request_failed

Occurs when request sent by http client failed, e.g. due to internet connection
problems.

• http_client_response

Occurs when received response on http client after sending request.

• lua_http_server_request

Occurs when Lua Http Server receives request.

• activate_scene_by_id

Occurs when external device activates scene.

• custom_device_element_state_changed

Occurs when one of custom device element attribute was changed by user,
automation or scene.

• custom_device_element_stateless_event

Occurs when one of custom device element is touched without changing its state
(eg. button is pressed).

Examples
More detailed event-based examples for specific object types can be found in
chapters related to them.

Check if device parameter changed

if event.type == "device_state_changed" and event.details ==
"target_temperature" then

print("One of devices changed state!")

end

4 Events

NOTE: You can't check to which device event refers to. In order to do it you need to
use device object directly. Same rule applies to scenes, automations, timers etc,
more detailed event-based examples for these object types can be found in chapters
related to them. Example:

if wtp[4]:changedValue("target_temperature") then

print(
"Wireless WTP Temperature regulator with ID 4 changed target temperature!")

end

Catch scene activation or failure

if event.type == "scene_activated" then

print("One of scenes was activated!")

end

if event.type == "scene_failed" then

print("One of scenes failed!")

end

NOTE: You can't check to which scene event refers to. In order to do it you need to
use scene object directly. Same rule applies to scenes, automations, devices, timers
etc, more detailed event-based examples for these object types can be found in
chapters related to them. Example:

if scene[4]:activated() then

print("Your scene with ID 4 activated!")

end

if scene[4]:failed() then

print("Your scene with ID 4 failed!")

end

Catch automation fail

if event.type == "automation_failed" then

print("One of automations failed!")

end

NOTE: You can't check to which automation event refers to. In order to do it you
need to use automation object directly. Same rule applies to scenes, automations,
devices, timers etc, more detailed event-based examples for these object types can
be found in chapters related to them. Example:

5 Events

if automation[4]:failed() then

print("Your automation with ID 4 failed!")

end

Check if a minute elapsed

if event.type == "minute_changed" then

print("Another minute elepased!")

end

Check if a timer elapsed

if event.type == "lua_timer_elapsed" then

print("One of lua timers elapsed!")

end

NOTE: You can't check to which timer event refers to. In order to do it you need to
use timer object directly. Same rule applies to scenes, automations, devices etc,
more detailed event-based examples for these object types can be found in chapters
related to them. Example:

if timers[4]:isElapsed() then

print("Lua timer with ID 4 elapsed!")

end

Catch sunrise event

if event.type == "sunrise" then

print("Sunrise starts now!")

end

Catch sunset event

if event.type == "sunset" then

print("Sunset starts now!")

end

6 Devices

Devices
Devices are exposed as key-based containers of objects with name matching their
class. Currently available containers:

• wtp - wireless WTP devices
• tech - wired TECH RS devices
• virtual - virtual devices added via web-app
• sbus - wired SBUS devices
• modbus - wired MODBUS devices
• system_module - system modules (eg. transceivers or signal extenders)
• alarm_system - Integrated Alarm system devices
• lora - Lora devices (available only in Sinum Pro)

Containers store devices in the form of a key corresponding to the device ID. For
example, when you want to refer to aWTP device with an ID 4 you should use:
wtp[4] object.

Same for the rest eg. tech[66] gives you access to TECH RS device with ID 66.

Devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue or setValueAfter methods.

For more details eg. available properties refer to specific device class/type
documentation.

Attempting to reference a nonexistent device object, retrieve a nonexistent device
property, or set the wrong value type will result in a script error.

Methods
• changed()

Checks if one of device property has recently changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of device has recently changed (thus is source of
event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property which should be checked

7 Devices

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string) - name of property

• setValue(property_name, property_value)

Sets value for object property.

Returns:
◦ (userdata) - reference to device object, for chained calls

Arguments:

◦ property_name (string) - name of property
◦ property_value (any) - property type dependant value which should be set

• setValueAfter(property_name, property_value, seconds_after)

Sets value for object property after certain time.

Returns:
◦ (userdata) - reference to device object, used for chained calls

Arguments:

◦ property_name (string) - name of property
◦ property_value (any) - property type dependant value which should be set
◦ seconds_after (int) - number of seconds after which the action will take place

• call(command_name, arg)

Runs a device command.

Returns:
◦ (userdata) - reference to device object, for call chains

Arguments:

◦ command_name (string) - name of command available for device
◦ arg (any, optional) - argument for command

• hasTag(tag)

Returns true if device has tag specified in parameter.

Returns:
◦ (boolean)

Arguments:

◦ tag (string) - tag name

8 Devices

Commands
User can execute specific actions for devices by using commands (eg. fully open
roller blinds) instead of changing attributes.

For more details eg. available commands refer to specific device class/type
documentation.

Examples
Check if any property changed

if wtp[55]:changed() then
print("Wireless WTP device with ID 55 changed!")

end

Check if specific property changed

if wtp[55]:changedValue("signal") then
print("Wireless WTP device with ID 55 changed signal!")

end

Get value of a device property

if wtp[4]:getValue("open") then
print("Window is open!")

else
print("Window is closed!")

end

Set value of a device property

print("Lights ON!")
wtp[9]:setValue("state", true)

Set more than one property at once with chained calls

wtp[9]
:setValue("state", true)
:setValue("name","Lights ON")
:setValueAfter("state", false, 300)
:setValueAfter("name", "Lights OFF", 300)

9 Devices

Set value of device property after certain time

print("Lights will turn OFF after 30 seconds!")
wtp[9]:setValueAfter("state", false, 30)

Call device commands

tech[5]:call("toggle")
wtp[3]:call("open", 55)

10 Scenes

Scenes
One-time execution of a sequence of actions programmed by the user, eg the scene
”I'm leaving the house” may close the blinds and lower the target temperature in
room.

Scene may be added, edited or deleted via REST API or a web application served
through the central unit server.

Activation and property modification is possible via REST API, web app or directly
from scripts using scene container eg. scene[6] gives you access to scene with ID
6.
Scenes have global scope and they are visible in all executions contexts.

NOTE: you must not use blocking functions, e.g. delay or long-acting loops, the
scene should execute as soon as possible or it will block execution queue for other
scenes.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent scene object, retrieve a nonexistent scene
property, or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier

• name (string)

User defined name of scene. Cannot contain special characters except : , ; .

- _

• enabled (boolean)

Defines if scene is enabled or not. In other words, it means if it's possible to
execute that scene or not.

• banned (boolean, read-only)

Smiliar to enabled proproperty but set by system. Defines if scene failed and is
excluded (not able to execute) when condition error_counter >= max_errors is
met.

• error_counter (integer, read-only)

Error counter counts error on every fail of scene eg. syntax error or exceeding
execution time.

• max_errors (integer, read-only)

Maximum possible errors counted before scene gets banned. Defined by user via
REST API.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

11 Scenes

• max_execution_time (integer, read-only)

Maximum possible execution time in seconds before scene will get terminated
with error. Defined by user via REST API.

• labels (array, read-only)

Collection of scene specific labels.

e.g. information if scene is added to room.

• room_id (integer, read-only)

ID of room with which scene is associated or nil otherwise.

• dir_id (integer, read-only)

ID of directory where the scene is.

• tags (table, read-only)

Collection of tags assigned to scene.

Methods
• changed()

Checks if one of scene property has recently changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of scene has recently changed (thus is source of event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property which should be checked

• activated()

Checks if scene was activated (thus is source of event).

Returns:
◦ (boolean)

• failed()

Checks if scene was failed (thus is source of event).

Returns:
◦ (boolean)

• hasTag(tag)

Returns true if scene has tag specified in parameter.

12 Scenes

Returns:
◦ (boolean)

Arguments:

◦ tag (string) - tag name

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string) - name of property

• setValue(property_name, property_value)

Sets value for object property.

Returns:
◦ (userdata) - reference to scene object, for call chains

Arguments:

◦ property_name (string) - name of property
◦ property_value (any) - property type dependant value which should be set

• activate()

Activates scene.

Returns:
◦ (userdata) - reference to scene object, for call chains

• activateAfter(seconds_after)

Activates scene after certain time.

Returns:
◦ (userdata) - reference to scene object, for call chains

Arguments:

◦ seconds_after (integer) - number of seconds after which the action will take
place

• call(command_name, arg)

Calls scene to execute commmand.

Returns:
◦ (reference to scene object)

Arguments:

◦ command_name (string) - name of command available for scene
◦ arg (any, optional) - argument for command

13 Scenes

Commands
• activate

Another way to activate a scene.

Examples
Activate a scene at sunrise

if event.type == "sunrise" then
scene[3]:activate()

end

Change scene properties with chained calls

scene[3]
:setValue("enabled", false)
:setValue("name", "Temporary turned off")

Sample scenes: ”leaving home” and ”returning home”

”Leaving Home” scene saves current device presets to a variable before changing
them, so the ”Returning Home” scene can restore them later.

NOTE: Global lua string variable is required, you can create one via application in
configuration.

Leaving Home

-- store current configuration into local table
local dataToSave = {

thermostat_temperature_1 = virtual[149]:getValue("target_temperature"),
thermostat_temperature_2 = virtual[150]:getValue("target_temperature"),
blind_opening_1 = wtp[290]:getValue("target_opening"),
blind_opening_2 = wtp[291]:getValue("target_opening")

}

-- serialize data into string and save it to global variable
variable[4]:setValue(JSON:encode(dataToSave))

-- change device values to home away ones
virtual[149]:setValue("target_temperature", 150)
virtual[150]:setValue("target_temperature", 150)
wtp[290]:setValue("target_opening", 0)
wtp[291]:setValue("target_opening", 0)

Returning Home

-- Restore device parameters saved by the "leaving home" scene.

-- deserialize previously stored data into local table
local dataToLoad = JSON:decode(variable[4]:getValue())

-- restore previous configuration
virtual[149]:setValue("target_temperature", dataToLoad.thermostat_temperature_1)

14 Scenes

virtual[150]:setValue("target_temperature", dataToLoad.thermostat_temperature_2)
wtp[290]:setValue("target_opening", dataToLoad.blind_opening_1)
wtp[291]:setValue("target_opening", dataToLoad.blind_opening_2)

15 Automations

Automations
Cyclical algorithms that are always ran on every event. The user is responsible for
”catching” the event and performing a specific action on its basis, eg based on the
movement in the room, automatically turn on and off the light.

Automation may be added, edited or deleted via REST API or a web application
served through the central unit server.

Access is possible via scripts using automation container eg. automation[6] gives
you access to automation with ID 6.
Automation have global scope and they are visible in all executions contexts.

NOTE: you must not use blocking functions, e.g. delay or long-acting loops, the
automation should execute as soon as possible or it will block execution queue for
other automation.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent automation object, retrieve a nonexistent
automation property, or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier

• name (string)

User defined name of automation. Cannot contain special characters except : ,

; . - _

• enabled (boolean)

Defines if automation is enabled or not. In other words, it means if it's possible to
execute that automation or not.

• banned (boolean, read-only)

Smiliar to enabled proproperty but set by system. Defines if automation failed
and is excluded (not able to execute) when condition error_counter >=

max_errors is met.

• ban_reason (string, read-only)

Reason why automation was banned.

• error_counter (integer, read-only)

Error counter counts error on every fail of automation eg. syntax error or
exceeding execution time.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

16 Automations

• max_errors (integer, read-only)

Maximum possible errors counted before automation gets banned. Defined by
user via REST API.

• max_execution_time (integer, read-only)

Maximum possible execution time in seconds before automation will get
terminated with error. Defined by user via REST API.

• dir_id (integer, read-only)

ID of directory where the automation is.

• tags (table, read-only)

Collection of tags assigned to automation.

Methods
• changed()

Checks if one of automation property has recently changed (thus is source of
event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of automation has recently changed (thus is source of
event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property which should be checked

• failed()

Checks if automation has failed (thus is source of event).

Returns:
◦ (boolean)

• hasTag(tag)

Returns true if automation has tag specified in parameter.

Returns:
◦ (boolean)

Arguments:

◦ tag (string) - tag name

17 Automations

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - property value

Arguments:

◦ property_name (string) - name of property

• setValue(property_name, property_value)

Sets value for object property.

Returns:
◦ (userdata) - automation object reference, for chaining calls

Arguments:

◦ property_name (string) - name of property
◦ property_value (any) - property type dependant value which should be set

Examples
Check if automation failed

if automation[2]:failed() then
print("Automation failed!")

end

Change automation properties

automation[3]
:setValue("enabled", false)
:setValue("name", "Disabled")

18 Rooms

Rooms
Rooms are exposed as a key-based container of objects room .

Container stores rooms in the form of a key corresponding to the room ID. For
example, when you want to refer to a Room with ID 4 you should use: room[4]
object.

Attempting to reference a nonexistent room object, retrieve a nonexistent room
property, or set the wrong value type will result in a script error.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Available Properties

• id (integer, read-only)

Unique object identifier

• name (string)

User defined name of room. Cannot contain special characters except : , ; . -

_

• icon (string)

User defined icon of room.

• color (string, read-only)

User defined icon of room.

• has_error (boolean, read-only)

Indicates if any associated device has error.

• has_warning (boolean, read-only)

Indicates if any associated device has warning.

• is_heating (boolean, read-only)

Indicates if any associated thermostat is currently in heating mode.

• is_cooling (boolean, read-only)

Indicates if any associated thermostat is currently in cooling mode.

• labels (array, read-only)

Collection of room specific labels. e.g. information if room is added to floor.

• floor_id (integer, read-only)

ID of floor with which the room is associated or null otherwise.

19 Rooms

• is_window_open (boolean, read-only)

Informs whether there is window opened in any associated thermostat.

Methods
• changed()

Checks if one of room property has recently changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of room has recently changed (thus is source of event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property which should be checked

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string) - name of property

• setValue(property_name, property_value)

Sets value for object property.

Returns:
◦ (userdata) - reference to room object, for call chains

Arguments:

◦ property_name (string) - name of property
◦ property_value (any) - property type dependant value which should be set

• foreach(function)

Executes function for each device added to room. Function should have following
signature: function (dev) where dev is device in room.

Arguments:

◦ function (function) - function that will be executed for all devices

• foreach(tag, function)

Executes function for each device added to room with specified tag. Function
should have following signature: function (dev) where dev is device in room.

20 Rooms

Arguments:

◦ tag (string) - tag of device which will be checked when choosing devices to
execute function

◦ function (function) - function that will be executed for all devices with
specified tag

• getDevicesByTag(tag)

Returns all devices added to room with specified tag.

Returns:
◦ (table) - sequence with device objects

Arguments:

◦ tag (string) - tag of device which will be returned

Examples
Change room properties

room[3]:setValue("name", "Bedroom")

Turn on all devices in room

room[2]:foreach(function (dev)
dev:setValue("state", true)

end)

Turn on all devices in a room which have tag 'light'

room[2]:foreach("light", function (dev)
dev:call("turn_on")

end)

List all devices with tag 'regulator' in a room

utils.table:forEach(room[2]:getDevicesByTag('regulator'), function (reg)
print(reg:getValue('name'))

end)

21 Floors

Floors
Floors are exposed as key-based container of objects floor .

Container stores floors in the form of key corresponding to the floor ID. For example,
when you want to refer to a Floor with ID 4 you should use: floor[4] object.

Attempting to reference a nonexistent floor object, retrieve a nonexistent floor
property, or set the wrong value type will result in a script error.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of room. Cannot contain special characters except : , ; . -

_

• level (integer)

User defined value indicating at which level the floor is. This value has to be
unique accross all floors.

Methods
• changed()

Checks if one of the floor property has recently changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of floor has recently changed (thus is source of event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property which should be checked.

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

22 Floors

Arguments:

◦ property_name (string) - name of property.

• setValue(property_name, property_value)

Sets value for object property.

Returns:
◦ (userdata) - reference to floor object, for call chains

Arguments:

◦ property_name (string) - name of property.
◦ property_value (any) - property type dependant value which should be set

Examples
Change floor properties

floor[4]:setValue("name", "Ground floor");
floor[4]:setValue("level", 0);

23 DateTime

DateTime
Global scope object containing date and time information.

Available in all contexts. You can access it using dateTime object.

Methods
• changed()

Checks if minute changed.

Returns:
◦ (boolean)

• getDay()

Day of month according to local time configured in system.

Returns:
◦ (number) - integer in 1–31 range

• getMonth()

Month of year according to local time configured in system.

Returns:
◦ (number) - integer in 1–12 range

• getYear()

Year according to local time configured in system.

Returns:
◦ (number) - integer, ≥2020

• getSeconds()

Seconds according to local time configured in system.

Returns:
◦ (number) - integer in 0–61 range (leap seconds)

• getMinutes()

Minutes of hour according to local time configured in system.

Returns:
◦ (number) - integer in 0–59 range

• getHours()

Hour according to local time configured in system.

Returns:
◦ (number) - integer in 0–23 range

24 DateTime

• getWeekDay()

Day of week according to local time configured in system starting from sunday
(index 0)

Returns:
◦ (number) - integer in 0–6 range

• getWeekDayString()

Day of week according to local time configured in system represented as string

Returns:
◦ (string) - week day name, one of: sunday , monday , tuesday , wednesday ,

thursday , friday , saturday

• getTotalTime()

Total time elapsed since 1970-01-01 in seconds.

Returns:
◦ (number) - Unix timestamp integer

• getTimeZoneOffset()

Returns current time zone offset in seconds including daylight saving time offset.

Returns:
◦ (number) - integer

• isDaylightSavingTimeActive()

Return info whether DST is currently active or not.

Returns:
◦ (boolean)

• getTimeOfDay()

Minutes of day in local time, since 00:00 eg. 750 is equal to 12:30

Returns:
◦ (number) - integer in 0–1439 range

Examples
Perform an action every minute

if dateTime:changed() then
print("Another minute elepased!")

end

25 DateTime

Get current time

message = string.format(
"It is %s, %02d:%02d:%02d",
dateTime:getWeekDayString(), dateTime:getHours(),
dateTime:getMinutes(), dateTime:getSeconds())

print(message)

Perform actions on monday at 7:30

NOTE: When scheduling actions based on specific time-point, it is recommended to
check if minute elapsed first. Otherwise action will be called on every run-cycle of
lua (every event of system) at specific time-point.

if dateTime:changed() and dateTime:getWeekDayString() == "monday" then
if dateTime:getHours() == 7 and dateTime:getMinutes() == 30 then
print("Its monday, 7:30!")

end
end

Perform an action every minute between 7:30 and 10:00 only at
weekends

if dateTime:changed() then
local day = dateTime:getWeekDayString()
if day == "saturday" or day == "sunday" then
if dateTime:getTimeOfDay() >= 450 and dateTime:getTimeOfDay() <= 600 then

print("Its weekend morning!")
end

end
end

26 Variables

Variables
Variables defined in the script are not preserved between calls or subsequent cycles,
you should use Lua variables to store the value between script calls.
Lua variables have global scope and they are visible in all executions contexts.

Variables are exposed in the key-based container of objects: variable . Container
store variables in the form of a key corresponding to the variable ID. For example,
when you want to refer to a Lua variable with ID 4 you should use: variable[4]
object.

Attempting to reference a nonexistent device object, retrieve a nonexistent device
property, or set the wrong value type will result in a script error.

Types
There are now three types of variables that can be used in system.

• boolean - holds boolean values: true/false
• integer - holds integer numbers
• string - holds text

Methods
• changed()

Checks if value which is holded by object changed.

Returns:
◦ (boolean)

• getValue()

Returns value which is holded by object.

Returns:
◦ (any) - depends on variable type

• setValue(value)

Sets value for object.

Returns:
◦ reference to variable object

Arguments:

◦ value (any) - variable type dependant value which should be set

• save()

Copies current value to default_value and saves it to database. Next
application start will use default_value to restore value property.

27 Variables

Examples
Set variable values

-- type: "string"
variable[1]:setValue("New text")

-- type: "integer"
variable[2]:setValue(42)

-- type: "boolean"
variable[3]:setValue(true)

Count failed scenes per day

if dateTime:changed() and dateTime:getHours() == 0 and dateTime:getMinutes() ==
0 then
variable[1]:setValue(0)

elseif event.type == "scene_failed" then
variable[1]:setValue(variable[1]:getValue() + 1)

end

Use that counter in other automation

-- react to 10 scene fails
if variable[1]:changed() and variable[1]:getValue() >= 10 then

print("Something is wrong!")
wtp[3]:call("turn_on")

end

28 Timers

Timers
Timers are can be used to count-down time for performing actions based on intervals
or periods of time (milliseconds , seconds , minutes or hours). They can also run
in stopwatch mode to measure time.

In timer mode, it is as easy as setting the desired time using the start method.
After the time has elapsed, the timer will trigger an event (lua_timer_elapsed) to
inform you that the time has counted down.

In stopwatch mode, the time is counted continuously from the moment of starting
with the startFreeRun method and it does not trigger an event because there is no
time set. The total time elapsed can be retrieved using the getElapsedTime method.

Timer may be added, edited or deleted via REST API or a web application served
through the central unit server.

They cannot be edited, but access to their methods is possible via scripts using
timer container eg.

timer[6] gives you access to timer with ID 6.

Timers have global scope and they are visible in all executions contexts.

NOTE: it's not recommended to schedule multiple, parallel short intervals for
timers, as this may degrade overall system performance due to large amount of
events emitted.

Methods
• startFreeRun()

Starts the stopwatch mode. Cancels previous modes and resets internal
stopwatch counter if called again.

• start(time)

Starts the count-down mode for certain amount of time in preconfigured units.
Extends current interval if called again.

NOTE: when using timer in count-down mode with milliseconds unit, minimum
interval is 100 ms.

Arguments:

◦ time (int) - amount of time in preconfigured units

• getElapsedTime()

Returns total elapsed time. If timer is running - time since last startFreeRun \
start call.

If timer did stop - time counted until stop was called.

If timer did elapse - time which was set as start argument.

Returns:

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

29 Timers

◦ (number) - integer

• isElapsed()

Returns information if timer is source of current execution context eg. you can
catch moment of elapse.

Returns:
◦ boolean

• getState()

Returns information of timer state. Can be one of following: off , counting ,
elapsed , free_run .

Returns:
◦ string

• getUnit()

Returns timer unit. Can be one of following: milliseconds , seconds , minutes ,
hours .

Returns:
◦ string

• stop()

Immediately stops (sets state to off) timer when running. In count-down mode,
elapsed event won't fire afterwards. Does nothing if timer is already in off or
elapsed state.

Examples
Start timer if it was not started before.

if timer[3]:getState() == "off" then
timer[3]:start(1)

end

Start timer in stopwatch mode

timer[5]:startFreeRun()

Start timer in count-down timer mode for 5 seconds

timer[3]:start(5)

30 Timers

Start timer in count-down timer mode for 2 hours

timer[1]:start(2)

NOTE: Starting for 2 hours and 5 seconds may look similar interval but depends on
unit property configured via REST API!

Count time between events

if wtp[5]:changedValue("state") then
-- get elapsed time and start new round
print("Last change took place %d seconds ago", timer[5]:getElapsedTime())
timer[5]:startFreeRun()

end

Catch timer elapse

if timer[99]:isElapsed() then
print("Timer has elapsed!")

end

-- Trigger conditions for timer

if dateTime:changed() then
print("Count-down starts!")
timer[99]:start(100)

end

if wtp[33]:changedValue("open") then
print("Count-down starts!")
timer[99]:start(500)

end

31 Statistics

Statistics
User has possibility of adding custom statistic entries in lua scripts (scenes,
automations and custom devices), which can be then displayed in statistics queries.

Points can be added using statistics object, which has global scope and is visible
in all executions contexts.

Points are associated to exection context eg. when adding point from automation
with id 5 , you should select this automation as source of statistics when configuring
query in web/mobile application.

NOTE Throttling mechanism will prevent from adding too many points per time.
User can add point only once every minute, attempting to do it more often will be
ignored. See return status of addPoint function.

Methods
• addPoint(name, value, unit)

Adds point with value for object property.

Returns:
◦ (boolean) - true if a point was added (can fail if called more often than once a
minute)

Arguments:

◦ name (string) - user defined name of statistic serie
◦ value (number) - value of stats point
◦ unit (unit) - one of available units listed below

Units
List of available statistics units:

• unit.celsius_x10

• unit.relative_humidity_x10

• unit.hectopascals_x10

• unit.indoor_air_quality

• unit.percent

• unit.bool_unit

• unit.ppm

• unit.lux

• unit.celsius

• unit.kwh

• unit.micro_grams_per_m3

• unit.liters_per_hour

• unit.watt

• unit.percent_x10

32 Statistics

• unit.null

• unit.pascal

• unit.second

• unit.volt

• unit.millivolts

• unit.milliamp

• unit.milliwatt

• unit.wh

• unit.m3_H

• unit.milliseconds

• unit.percent_per_hertz

• unit.bar_x10

Suffix _x10 means that value is expected to be multiplied by 10. Eg. if you want to
store 23.5°C using unit.celsius_x10 you need to put 235 as value when adding
point.

Examples
Log temperature once per minute

Lua variable may be fed with value eg. from http calls in another automation.

if dateTime:changed() then
local value = variable[3]:getValue()
statistics:addPoint("temperature", value, unit.celsius_x10)

end

33 Sunrise and Sunset

Sunrise and Sunset
Global scope objects which will help user to do actions referring in time to sunrise
and sunset

Available in all contexts. You can access to it using sunrise and sunset objects.

Methods
• hour()

The hour when sunrise / sunset will occur.

Returns:
◦ (number) - integer in 0–23 range

• minute()

The minute when sunrise / sunset will occur (minute in hour)

Returns:
◦ (number) - integer in 0–59 range

• timeOfDay()

The minute when sunrise / sunset will occur (minute of day, since 00:00) eg. 750
is equal to 12:30

Returns:
◦ (number) - integer in 0–1439 range

Examples
Get time of sunrise

message = string.format(
"Today sunrise will start at %02d:%02d",
sunrise:hour(), sunrise:minute())

print(message)

message = string.format(
"Today sunrise will start at %02d:%02d (%d minutes of day)",
sunrise:timeOfDay() / 60, sunrise:timeOfDay() % 60,
sunrise:timeOfDay())

print(message)

Catch sunrise event

if event.type == "sunrise" then
print("Sunrise starts now!")

end

34 Sunrise and Sunset

Catch sunset event

if event.type == "sunset" then
print("Sunset starts now!")

end

Do an action 2 hours after sunrise

if dateTime:changed() then
time = dateTime:getTimeOfDay()
checkPoint = sunrise:timeOfDay() + (2 * 60)

if checkPoint == time then
print("This will be called once, 2 hours after sunrise!")

end

if checkPoint <= time then
print(

"This will be called once per minute, 2 hours after sunrise, until 24:00"
)

end
end

Using timer to delay the action

if event.type == "sunrise" then
print("Sunrise starts now!")
timer[1]:start(2)

end

if timer[1]:isElapsed() then
print("This will be called once, 2 hours after sunrise!")

end

Defer action for device to 2 hours after sunrise

if event.type == "sunrise" then
print("Light is enabled and will be disabled after 2 hours!")

wtp[5]:setValue("state", true)
wtp[5]:setValueAfter("state", false, 2 * 60 * 60)

end

35 System

System
Global scope object for accessing system data.

Available in all contexts. You can access to it using system object.

Methods
• version()

Returns system version info object.

Returns:
◦ (table) - object with system version info with following properties:

• major* (number)
• minor (number)
• maintenance (number)
• environment (string)
• build (number)
• semver (string)

Examples
Print all

local version = system:version()
print("Major ", version.major)
print("Minor ", version.minor)
print("Maintenance ", version.maintenance)
print("Env ", version.environment)
print("Build ", version.build)
print("SemVer ", version.semver)

36 Weather

Weather
Global scope object which will help user to do actions referring on current and
forecast weather conditions.

Available in all contexts. You can access to it using weather object.

Properties
• enabled (string, read-only)

Indicates if weather feature is turned on. User must turn it on via web application
in order to weather object get data from server and work properly.

Methods
• current

Returns weather object containing information about current weather conditions.

Returns:
◦ weather_info object

• hourly

Returns array of weather objects containing information about forecasted
weather conditions for next 48 hours.

Returns:
◦ array of 48 weather_info objects

Weather Object
Object which is returned by current and hourly methods of global scope weather
object. Contains information about weather conditions.

Methods
• weather()

General weather description.

Returns:
◦ string, possible values: Clear , Clouds , Rain , Snow

• temperature()

Measured or forecast temperature. Unit: °C with one decimal number, multiplied
by 10.

Returns:
◦ (number)

37 Weather

• feelsLikeTemperature()

Measured or forecast feels like temperature. Unit: °C with one decimal number,
multiplied by 10.

Returns:
◦ (number)

• humidity()

Measured or forecast humidity in percent.

Returns:
◦ (number)

• pressure()

Measured or forecast pressure in hPa.

Returns:
◦ (number)

• windSpeed()

Measured or forecast wind speed. Unit: m/s with one decimal number, multiplied
by 10.

Returns:
◦ (number)

• windDegrees()

Measured or forecast wind direction in meteorological degrees.

Returns:
◦ (number) - integer in 0-359 range

• rain()

Rain volume that is predicted to fall. Unit: millimeters with one decimal number,
multiplied by 10.

Returns:
◦ (number)

• snow()

Snow volume that is predicted to fall. Unit: millimeters with one decimal number,
multiplied by 10.

Returns:
◦ (number) - integer

• cloudCoverage()

Cloud coverage in percentage.

Returns:
◦ (number) - integer

38 Weather

• changed()

Check if weather data has changed.

Returns:
◦ (boolean)

Examples
Read weather data on update

if weather:changed() then
print("Weather data updated")
print(weather:current():weather())
print(weather:current():temperature())
print(weather:current():feelsLikeTemperature())
print(weather:current():humidity())
print(weather:current():pressure())
print(weather:current():windSpeed())
print(weather:current():windDegrees())
print(weather:current():rain())
print(weather:current():snow())
print(weather:current():cloudCoverage())

end

Close the blind when there is strong wind and rain

if weather:current():windSpeed() > 400 and weather:current():rain() > 10 then
wtp[3]:call("down")
wtp[4]:call("down")

end

Signal alarm when there is strong wind expected in next 3–5 hours

function isStrongWind(data)
return data:windSpeed() > 400

end

if weather:changed() then
forecast = weather:hourly()
if isStrongWind(forecast[3]) or isStrongWind(forecast[4]) or

isStrongWind(forecast[5])
then
print("Strong wind expected!")
-- signal alarm
wtp[6]:call("turn_on")

end
end

39 Notifications

Notifications
Global scope object which allows user to send custom push or email notification
from lua scripts to cloud users or local super admin (providing that its account is
linked to cloud).

Available in all contexts. You can access it using notify object.

Methods
• info(title, body, users)

Sends info notification.

Arguments:

◦ title (string) - notification title, parameter is required i.e. must be at least 1
character long, maximum 65 characters

◦ body (string) - notification text, maximum 500 characters long
◦ users (int, array) - optional parameter which allows to specify user/users
(cloud user id or local super admin id) which will receive a notification. Can be
single ID number or array of ID‘s. Will send to all users if not specified.

• warning(title, body, users)

Sends warning notification.

Arguments:

◦ title (string) - notification title, parameter is required i.e. must be at least 1
character long, maximum 65 characters

◦ body (string) - notification text, maximum 500 characters long
◦ users (int, array) - optional parameter which allows to specify user/users
(cloud user id or local super admin id) which will receive a notification. Can be
single ID number or array of ID‘s. Will send to all users if not specified.

• error(title, body, users)

Sends error notification.

Arguments:

◦ title (string) - notification title, parameter is required i.e. must be at least 1
character long, maximum 65 characters

◦ body (string) - notification text, maximum 500 characters long
◦ users (int, array) - optional parameter which allows to specify user/users
(cloud user id or local super admin id) which will receive a notification. Can be
single ID number or array of ID‘s. Will send to all users if not specified.

40 Notifications

Examples
Notify user #1 of boiler state changes

boiler = tech[3]
if boiler:changedValue("state") then

if boiler:getValue("state") then
notify:info("Boiler", "Boiler turned on", 1)

else
notify:info("Boiler", "Boiler turned off", 1)

end
end

Notify users #1 and #3 of poor air quality

if dateTime:changed() then
if dateTime:getHours() == 8 and dateTime:getMinutes() == 0 then
sensor = wtp[3]
air_quality = sensor:getValue("air_quality")
if utils.table:indexOf({'poor','unhealthy','very_unhealthy'}, air_quality)
then

notify:warning("Air quality", "There is bad air today", {1, 3})
end

end
end

Notify everyone when there is no connection with pellet boiler controller

boiler = tech[3]
if boiler:changedValue("status") and boiler:getValue("status") == "offline"
then

notify:error("Pellet Boiler", "No connection with pellet boiler controller!")
end

41 Modbus Client

Modbus Client
Global scope objects which allow user to send requests to devices via RS-485 using
Modbus RTU protocol or via network using Modbus TCP protocol.

Both types (RS-485 and TCP) of clients are exposed in the key-based container of
objects: modbus_client .

Container store clients in the form of a key corresponding to the client ID. For
example, when you want to refer to a Lua Modbus Client with ID 4 you should use:
modbus_client[4] object.

Attempting to reference a nonexistent client or set the wrong value type will result
in a script error.

When using read methods first call will send request to slave device and next calls
will return the value from cache.

Cache values are refreshed periodically based on cache_refresh parameter from
modbus settings.

Values are kept in cache for time specified in keep_cached parameter from modbus
settings.

Modbus settings can be changed via web application.

When request fails in script due to error (e.g. timeout or invalid write) script will
fail with error.

Methods
• writeHoldingRegister(address, value)

Sends write request to slave modbus device with specified holding register
address and value.

Arguments:

◦ address (integer) - address of a holding register.
◦ value (integer) - value that should be written to holding register.

• writeHoldingRegisters(startAddress, values)

Sends write request to slave modbus device with specified holding registers
addresses and values.

Arguments:

◦ startAddress (integer) - start address of a holding register.
◦ values (array) - integer values that should be written to consecutive holding
registers starting with startAddress

• writeHoldingRegisterAsync(address, value)

Asynchronously sends write request to slave modbus device with specified
holding register address and value. Handle response state using
onRegisterAsyncWrite , onAsyncRequestFailure methods.

Arguments:

42 Modbus Client

◦ address (integer) - address of a holding register.
◦ value (integer) - value that should be written to holding register.

• writeHoldingRegistersAsync(startAddress, values)

Asynchronously sends write request to slave modbus device with specified
holding registers addresses and values. Handle response state using
onRegisterAsyncWrite , onAsyncRequestFailure methods.

Arguments:

◦ startAddress (integer) - start address of a holding register.
◦ values (array) - integer values that should be written to consecutive holding
registers starting with startAddress

• readHoldingRegister(address)

Reads value from holding register.

Returns:
◦ (number) - unsigned 16-bit integer

Arguments:

◦ address (integer) - address of a holding register.

• readHoldingRegisterAsync(address)

Asynchronously reads value from holding register. Handle response using
onRegisterAsyncRead , onAsyncRequestFailure methods.

Arguments:

◦ address (integer) - address of a holding register.

• readInputRegister(address)

Reads value from input register.

Returns:
◦ (number) - unsigned 16-bit integer

Arguments:

◦ address (integer) - address of a input register.

• readInputRegisterAsync(address)

Asynchronously reads value from input register. Handle response using
onRegisterAsyncRead , onAsyncRequestFailure methods.

Arguments:

◦ address (integer) - address of a input register.

• writeCoil(address, bit_value)

Sends write request to slave modbus device with specified coil address and value.

Arguments:

43 Modbus Client

◦ address (integer) - address of a coil.
◦ bit_value (boolean) - value that should be written to coil.

• writeCoils(startAddress, bit_values)

Sends write request to slave modbus device with specified coils addresses and
values.

Arguments:

◦ startAddress (integer) - start address of a coil.
◦ bit_values (array) - boolean values that should be written to consecutive coils
starting with startAddress

• writeCoilAsync(address, bit_value)

Asynchronously sends write request to slave modbus device with specified coil
address and value. Handle response state using onRegisterAsyncWrite ,
onAsyncRequestFailure methods.

Arguments:

◦ address (integer) - address of a coil.
◦ bit_value (boolean) - value that should be written to holding register.

• writeCoilsAsync(startAddress, bit_values)

Asynchronously sends write request to slave modbus device with specified coils
addresses and values. Handle response state using onRegisterAsyncWrite ,
onAsyncRequestFailure methods.

Arguments:

◦ startAddress (integer) - start address of a coil.
◦ bit_values (array) - boolean values that should be written to consecutive coils
starting with startAddress

• readCoil(address)

Reads value from coil.

Returns:
◦ (boolean)

Arguments:

◦ address (integer) - address of a coil.

• readCoilAsync(address)

Asynchronously reads value from coil. Handle response using
onRegisterAsyncRead , onAsyncRequestFailure methods.

Arguments:

◦ address (integer) - address of a coil.

44 Modbus Client

• readDiscreteInput(address)

Reads value from discrete input.

Returns:
◦ (boolean)

Arguments:

◦ address (integer) - address of a discrete input.

• readDiscreteInputAsync(address)

Asynchronously reads value from discrete input. Handle response using
onRegisterAsyncRead , onAsyncRequestFailure methods.

Arguments:

◦ address (integer) - address of a discrete input.

• isConnected()

Returns true if client's transceiver is connected to central unit, false otherwise.

Returns:
◦ (boolean)

• onRegisterAsyncRead(callback)

Callback hook. Calls function passed in argument when asynchronous Modbus
read request finishes successfully.

Arguments:

◦ callback (function, required) - callback function which should be called

Arguments:

• registerType (string) - type of read register (one of values: COILS ,
DISCRETE_INPUTS , INPUT_REGISTERS , HOLDING_REGISTERS)

• registerAddress (integer) - address of read register

• value (integer/boolean) - value of read register, type depends on register
type

• onRegisterAsyncWrite(callback)

Callback hook. Calls function passed in argument when asynchronous Modbus
write request finishes successfully.

Arguments:

◦ callback (function, required) - callback function which should be called

Arguments:

• registerType (string) - type of written register (one of values: COILS ,
DISCRETE_INPUTS , INPUT_REGISTERS , HOLDING_REGISTERS)

• registerAddress (integer) - address of written register

45 Modbus Client

• value (integer/boolean) - value of written register, type depends on register
type

• onAsyncRequestFailure(callback)

Callback hook. Calls function passed in argument when asynchronous Modbus
read or write request fails.

Arguments:

◦ callback (function, required) - callback function which should be called

Arguments:

• requestType (string) - type of request (one of values: READ , WRITE ,
MULIPLE_WRITE)

• error (string) - error returned by device or TIMEOUT when there are
connection problems

• registerType (string) - type of register (one of values: COILS ,
DISCRETE_INPUTS , INPUT_REGISTERS , HOLDING_REGISTERS)

• registerAddress (integer) - address of register

• value (integer/boolean) - value of register to write (0 / false for read
requests), type depends on register type

Examples
Read data from a modbus device

print(modbus_client[1]:readHoldingRegister(104))
print(modbus_client[1]:readInputRegister(2))
print(modbus_client[1]:readCoil(1))
print(modbus_client[1]:readDiscreteInput(5))

Write data to a holding register and a coil

modbus_client[1]:writeHoldingRegister(104, 43)
modbus_client[1]:writeCoil(1, true)

Write multiple values to holding registers and coils

modbus_client[1]:writeHoldingRegisters(104, {42, 43, 44, 45})
modbus_client[1]:writeCoils(1, {true, false, false, true})

46 Modbus Client

Turn on air conditioner using modbus protocol

local air_conditioner = modbus_client[1]

-- Set proper register and value according to
-- air conditioner modbus documentation.
local register = 40002
local turned_on_value = 1

air_conditioner:writeHoldingRegister(register, turned_on_value)

Turn off air conditioner using modbus protocol

local air_conditioner = modbus_client[1]

-- Set proper register and value according to
-- air conditioner modbus documentation.
local register = 40002
local turned_off_value = 1

air_conditioner:writeHoldingRegister(register, turned_off_value)

Handle asynchronous read request

modbus_client[1]:onRegisterAsyncRead(function(type, address, value)
print ("Successfully read value")
print (type, address, value)

end)

Handle asynchronous write request

modbus_client[1]:onRegisterAsyncWrite(function(type, address, value)
print ("Successfully written value")
print (type, address, value)

end)

Handle asynchronous request failure

modbus_client[1]:onAsyncRequestFailure(
function(requestType, error, registerType, registerAddress, value)

utils:printf(
"%s register %s %x failed with error %s",
requestType, registerType, registerAddress, error)

end)

47 Libraries - JSON

Libraries - JSON
It is possible to encode and decode JSON data in Lua interpreter.

Methods
• JSON:decode(text)

Decodes JSON to object representing it.

Returns:
◦ (table)

Arguments:

◦ text (string) - JSON data

• JSON:encode(object)

Encodes passed Lua table as JSON.

Returns:
◦ (string)

Arguments:

◦ object (any) - variable to be encoded

• JSON:encode_pretty(object)

Encodes passed Lua table as JSON with indentations.

Returns:
◦ (string)

Arguments:

◦ object (any) - variable to be encoded

Example

local json_text = "{\"name\":\"abc\"}"
local decoded = JSON:decode(json_text)

print(decoded.name)
-- abc

print(decoded["name"])
-- abc

local encoded_json = JSON:encode(decoded)
print(encoded_json)
-- {"name":"abc"}

local encoded_json_pretty = JSON:encode_pretty(decoded)
print(encoded_json_pretty)
--[[
{

"name":"abc"

48 Libraries - JSON

}
--]]

local data = { on = wtp[68]:getValue("state"), desc = "Test"}
print(JSON:encode(data))
-- {"on":false,"desc":"Test"}

49 Libraries - XML

Libraries - XML
It is possible to encode and decode XML data in Lua interpreter.

Methods
• XML:decode(text)

Decodes XML to object representing it.

Returns:
◦ (table)

Arguments:

◦ text (string) - XML data

• XML:encode(object)

Encodes passed Lua table as XML.

Returns:
◦ (string)

Arguments:

◦ object (any) - variable to be encoded

Example
XML input:

<devices>
<device type="wtp">
<id>1</id>
<name>Relay</name>
<state>true</state>

</device>
<device type="virtual">
<id>1</id>
<name>Thermostat</name>
<temperature>

<current>250</current>
<target>300</target>

</temperature>
</device>

</devices>

Decoding:

local decoded = XML:decode(xml_input)

print (decoded.devices.device[1].name)
-- Relay

print (decoded.devices.device[1]._attr.type)
-- wtp

print (decoded.devices.device[2].temperature.target)

50 Libraries - XML

-- 300

Encoding:

local xml = {
devices = {
device = {

{
_attr = {type = "wtp"},
id = 1,
name = "Relay",
state = "true"

},
{

_attr = {type = "virtual"},
id = 1,
name = "Thermostat",
temperature = {current = 250, target = 300}

}
}

}
}

print (XML:encode(xml))
-- will print contents of the xml sample above

51 Libraries - hash

Libraries - hash
It is possible to calculate various hashes in Lua interpreter.

Methods
• hash:sha256(input)

Calculates the sha256 hash for the given input string.

Returns:
◦ (string)

Arguments:

◦ input (string)

• hash:md5(input)

Calculates the md5 hash for the given input string.

Returns:
◦ (string)

Arguments:

◦ input (string)

Example

local hash1 = hash:sha256("abc")
local hash2 = hash:md5("abc")

print(hash:sha256("abc"))
-- ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

print(hash:md5("abc"))
-- 900150983cd24fb0d6963f7d28e17f72

52 Utilities

Utilities
Our interpreter is supplied with some lua utilities which should help you creating
more complicated alghoritms.

Functions
utils:printf(fmt, ...)

Prints formatted string, refer to printf(3) man page for more information.

Arguments:

• fmt (string) - format string
• ... (any) - values used to format the string

Example:

utils:printf("0x%04x", 32768)

-- stdout: [PRINT] 0x8000

utils:ternary(condition, trueValue, falseValue)

Returns proper value based on provided condition.

Returns:
• trueValue or falseValue directly

Arguments:

• condition (bool) - condition to check
• trueValue (any) - value to return if condition is true
• falseValue (any) - value to return if condition is false

Example:

function safeSqrt(value)
return utils:ternary(value > 0, math.sqrt(value), 0)

end

utils:integrateProperty(property, devices)

Copy property change from one device to other ones.

Arguments:

• property (string) - property to copy
• devices (table) - sequence of devices to integrate

Example:

53 Utilities

-- when one device is turned on, others are as well
utils:integrateProperty('state', { wtp[2], wtp[3], wtp[8] })

Deprecated methods
utils:stair_light(devices)

Binds all devices by state property allowing devices to change state at the same time.

For example when one relay changes state to true all other devices change state to
true too.

Can be used to easily connect stair lighs together.

Arguments:

• devices (array) - devices array

Example:

utils:stair_light({wtp[4], wtp[6], sbus[1]})

utils:integrate_property(property, devices)

Similar to utils:stair_light but can connect provided devices by any other
parameter.

For example can connect two or more blind controllers by property target_opening
allowing them to open/close together, changing only blind controller value.

Arguments:

• property (string) - property name that devices will keep the same value for
• devices (array) - devices array

Examples:

utils:integrate_property("target_opening", {wtp[8], wtp[9], sbus[21]})

utils:integrate_property("target_temperature", {wtp[11], tech[7]})

54 Utilities - colorspace conversion

Utilities - colorspace conversion
A set of routines for converting colors between color spaces, useful for various
lighting devices.

Representation
utils.color:philips_hue_normalize_hsb(hue, saturation, brightness)

Hue API v1 uses uint16_t for hue and uint8_t for the rest, but the HSV color
space represents hue as an angle on the color wheel and the rest as floats between 0
and 1. This routine can be used to convert Hue values into normalized HSV.
Returns:
• hue (number) - float, ⟨0; 360)
• saturation (number) - float, ⟨0; 1⟩
• value (number) - float, ⟨0; 1⟩
Arguments:

• hue (number) - fixed, ⟨0; 65535⟩
• saturation (number) - fixed, ⟨0; 255⟩
• brightness (number) - fixed, ⟨0; 255⟩
Example:

-- darkblue color
local h, s, v = utils.color:philips_hue_normalize_hsb(43690, 127, 127)

-- h ≈ 240
-- s ≈ .5
-- v ≈ .5

utils.color:normalize_rgb888(r, g, b)

Most implementations store RGB values as RGB888, while the floating point
representation is much more convenient for calculations.

This routine converts from uint8_t channel values to <0;1> float values.

Returns:
• red (number) - float, ⟨0; 1⟩
• green (number) - float, ⟨0; 1⟩
• blue (number) - float, ⟨0; 1⟩
Arguments:

• r (number) - red channel, fixed, ⟨0; 255⟩
• g (number) - green channel, fixed, ⟨0; 255⟩
• b (number) - blue channel, fixed, ⟨0; 255⟩
Example:

55 Utilities - colorspace conversion

-- aqua color
local r, g, b = utils.color:normalize_rgb888(0, 0xff, 0xff)

-- r = 0
-- g = 1
-- b = 1

utils.color:clamp_rgb(r, g, b)

Most color spaces don't contain every color, so converting to sRGB from something
like CIEXYZ can give channel values outside of range, like a negative channel value.
RGB implementations cannot shine a negative amount of red for example, so a color
like that cannot be represented in them. The color can be approximated by clamping
values and it should be sufficient for most applications.

This routine clamps each channel value to ⟨0; 1⟩ range
Returns:
• r (number) - red channel, float, ⟨0; 1⟩
• g (number) - green channel, float, ⟨0; 1⟩
• b (number) - blue channel, float, ⟨0; 1⟩
Arguments:

• r (number) - red channel, float, ⟨0; 1⟩
• g (number) - green channel, float, ⟨0; 1⟩
• b (number) - blue channel, float, ⟨0; 1⟩
Example:

local r, g, b = utils.color:clamp_rgb(utils.color.ciexyz_to_rgb(X, Y, Z))

utils.color:html(r, g, b)

The RGB color value is often represented in #rrggbb form, as seen in HTML or CSS.
This routine creates such string from three separate channel values.

Returns:
• hex (string) - string, formatted like #%02x%02x%02x

Arguments:

• r (number) - red channel, float, ⟨0; 1⟩
• g (number) - green channel, float, ⟨0; 1⟩
• b (number) - blue channel, float, ⟨0; 1⟩
Example:

virtual[1]:setValue('color', utils.color:html(r, g, b))

56 Utilities - colorspace conversion

Gamma correction
utils.color:gamma(gamma, channel)

Perform gamma compression with gamma value on channel value. The formula is:
𝑔𝑎𝑚𝑚𝑎√𝑐ℎ𝑎𝑛𝑛𝑒𝑙
Returns:
• channelp (number) - compressed channel

Arguments:

• gamma (number) - gamma value, i.e. 2.2
• channel (number) - value to compress

Example:

local z = utils.color:gamma(1.8, .456)

-- z ≈ .64645

utils.color:gamma3(gamma, channel1, channel2, channel3)

Perform gamma compression with gamma value on three channel values. This is
equivalent to three calls to utils.color:gamma() , but can be nicely inlined with
other color conversion routines.

Returns:
• channel1p (number) - compressed channel1

• channel2p (number) - compressed channel2

• channel3p (number) - compressed channel3

Arguments:

• gamma (number) - gamma value, i.e. 2.2
• channel1 (number) - value to compress
• channel2 (number) - value to compress
• channel3 (number) - value to compress

Example:

local rp, gp, bp = utils.color:gamma3(2.2, 0, .5, .5)

-- rp = 0
-- gp ≈ .72974
-- bp ≈ .72974

utils.color:degamma(gamma, channelp)

Perform gamma decompression (linearization) of channelp value with gamma . The
formula is: 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑝𝑔𝑎𝑚𝑚𝑎

57 Utilities - colorspace conversion

Returns:
• channel (number) - decompressed channelp

Arguments:

• gamma (number) - gamma value, i.e. 2.2
• channelp (number) - value to decompress

Example:

local c = utils.color:degamma(2.2, .4958)

-- c ≈ .2136

utils.color:degamma3(gamma, channel1p, channel2p, channel3p)

Perform gamma decompression (linearization) of three channel values with gamma .
This function is equivalent to three calls to utils.color:degamma() , but can be
nicely inlined with other color conversion routines.

Returns:
• channel1 (number) - decompressed channel1p

• channel2 (number) - decompressed channel2p

• channel3 (number) - decompressed channel3p

Arguments:

• gamma (number) - gamma value, i.e. 2.2
• channel1p (number) - value to decompress
• channel2p (number) - value to decompress
• channel3p (number) - value to decompress

Examples:

local r, g, b = utils.color:degamma3(2.2, 0, .5, .5)

-- r = 0
-- g ≈ .2176
-- b ≈ .2176

-- Philips Hue API v1 was able to interpret HSV. CLIP API v2 cannot do this,
-- but that behavior can be emulated

-- convert H, S, V to x, y for Hue
local x, y = utils.color:CIEXYZ_to_CIExyY(utils.color:lin_sRGB_to_CIEXYZ(

utils.color:degamma3(2.2, utils.color:hsv_to_rgb(H, S, 1))
))

-- now use x and y to set the color and V to set the brightness

58 Utilities - colorspace conversion

Color space conversion
utils.color:hsv_to_rgb(hue, saturation, value)

Converts color value from convenient for humans HSV model to convenient for
computer displays RGB model without gamma correction.
Returns:
• r (number) - red channel, float, ⟨0; 1⟩
• g (number) - green channel, float, ⟨0; 1⟩
• b (number) - blue channel, float, ⟨0; 1⟩
Arguments:

• hue (number) - float, ⟨0; 360)
• saturation (number) - float, ⟨0; 1⟩
• value (number) - float, ⟨0; 1⟩
Example:

-- pure blue
local r, g, b = utils.color:hsv_to_rgb(240, 1, 1)

-- r = 0
-- g = 0
-- b = 1

utils.color:rgb_to_hsv(r, g, b)

Converts color value from RGB model to HSV model with no gamma correction.
Returns:
• hue (number) - float, ⟨0; 360)
• saturation (number) - float, ⟨0; 1⟩
• value (number) - float, ⟨0; 1⟩
Arguments:

• r (number) - red channel, float, ⟨0; 1⟩
• g (number) - green channel, float, ⟨0; 1⟩
• b (number) - blue channel, float, ⟨0; 1⟩
Example:

-- pure yellow
local h, s, v = utils.color:rgb_to_hsv(1, 1, 0)

-- h = 60
-- s = 1
-- v = 1

59 Utilities - colorspace conversion

utils.color:lin_sRGB_to_CIEXYZ(r, g, b)

Transforms linear sRGB model color to a CIEXYZ model color.
Returns:
• X (number) - chromacity component
• Y (number) - luminosity
• Z (number) - chromacity component

Arguments:

• r (number) - red channel, linear; float, ⟨0; 1⟩
• g (number) - green channel, linear; float, ⟨0; 1⟩
• b (number) - blue channel, linear; float, ⟨0; 1⟩
Example:

local X, Y, Z = utils.color:lin_sRGB_to_CIEXYZ(.5, .5, .5)

-- X ≈ .47525
-- Y ≈ .5
-- Z ≈ .5445

utils.color:CIEXYZ_to_lin_sRGB(X, Y, Z)

Transforms color value from CIEXYZ to linear sRGB.
NOTE: sRGB colors are usually represented as gamma–compressed values, so
values returned by this function should be passed to utils.color:degamma3()

before passing them to i.e. utils.color:html()

NOTE: The result values can be out of range, as sRGB color space is ”smaller” than
CIEXYZ. Out of range results should be fed to utils.color:clamp_rgb to
approximate the color.

Returns:
• r (number) - red channel, linear; float, ⟨0; 1⟩
• g (number) - green channel, linear; float, ⟨0; 1⟩
• b (number) - blue channel, linear; float, ⟨0; 1⟩
Arguments:

• X (number) - chromacity component
• Y (number) - luminosity
• Z (number) - chromacity component

Example:

local r, g, b = utils.color:CIEXYZ_to_lin_sRGB(.5, .5, .5)

-- r = .6025
-- g = .4742
-- b = .4543

60 Utilities - colorspace conversion

utils.color:CIEXYZ_to_CIExyY(X, Y, Z)

Converts color value from CIEXYZ to CIExyY, where x and y are coordinates on the
chromacity diagram. The luminosity value stays the same. The CIExyY model is
used by the Philips Hue API.

Returns:
• x (number) - chromacity coordinate, float
• y (number) - chromacity coordinate, float
• Y (number) - luminosity value, float

Arguments:

• X (number) - chromacity component, float
• Y (number) - luminosity, float
• Z (number) - chromacity component, float

Example:

-- white
local x, y, Y = utils.color:CIEXYZ_to_CIExyY(1, 1, 1)

-- x = 1 / 3
-- y = 1 / 3
-- Y = 1

utils.color:CIExyY_to_CIEXYZ(x, y, Y)

Converts CIExyY (chromacity diagram coordinates) to CIEXYZ model. The
luminosity stays the same.

Returns:
• X (number) - chromacity component, float
• Y (number) - luminosity, float
• Z (number) - chromacity component, float

Arguments:

• x (number) - chromacity coordinate, float
• y (number) - chromacity coordinate, float
• Y (number) - luminosity value, float

Example:

-- orange
local X, Y, Z = utils.color:CIExyY_to_CIEXYZ(.6, .3, .2)

-- X = .4
-- Y = .2
-- Z ≈ .007

61 Utilities - ctype

Utilities - ctype
A set of character type recognition routines based on ctype.h . Refer to isalpha(3)
manpage for more information.

These routines work correctly only for ASCII characters (a lookup table for all
UNICODE characters would be bigger than the utils module).

Each function takes a single character as an argument.

Functions
utils.ctype:isalnum(c)

Returns true for alphanumeric characters.

utils.ctype:isalpha(c)

Returns true for alphabetic characters.

utils.ctype:isascii(c)

Returns true for 7-bit characters.

utils.ctype:isblank(c)

Returns true for a space or a tab character.

utils.ctype:iscntrl(c)

Returns true for control characters.

utils.ctype:isdigit(c)

Returns true for decimal digit characters.

utils.ctype:isgraph(c)

Returns true for characters that have graphic representation.

utils.ctype:islower(c)

Returns true for lowercase alphabetic characters.

utils.ctype:isprint(c)

Returns true for characters with graphic representation (space included).

62 Utilities - ctype

utils.ctype:ispunct(c)

Returns true for characters that have graphic representation and are not
alphanumeric.

utils.ctype:isspace(c)

Returns true for one of:

• " " – space
• "\f" – page feed
• "\n" – line feed
• "\r" – carriage return
• "\t" – horizontal tabulation
• "\v" – vetrical tabulation

utils.ctype:isupper(c)

Returns true for uppercase alphabetic characters.

utils.ctype:isxdigit(c)

Returns true for characters used as hexadecimal digits, both upper and lower case.

63 Utilities - math

Utilities - math
An addition to Lua's built-in math library

Functions
utils.math:scale(oldMin, oldMax, newMin, newMax, value)

Converts value between two linear scales.

Returns:
• (number) - scaled value

Arguments:

• oldMin (number) - bottom of the current scale
• oldMax (number) - top of the current scale
• newMin (number) - bottom of the target scale
• newMax (number) - top of the target scale
• value (number) - a value contained in current scale that will be converted to the
target scale.

Example:

local adcOutput = 989
local voltage = utils.math:scale(0, 1023, 0, 5, adcOutput)
-- voltage ≈ 4.83

utils.math:bounds(min, max, value)

Throws an error if the value is not , range < min ; max> .

Arguments:

• min (number) - bottom of the allowed value range
• max (number) - top of the allowed value range
• value (number) - a value to be checked against min and max

Example:

utils.math:bounds(0, 1, 12)
-- error: Argument 12 out of bounds

utils.math:dot(vec1, vec2)

Returns dot product of two vectors. If sequences representing those vectors are not
equal in length, it is assumed that both have length of the shorter one.

Returns:
• (number) - dot product of the vectors

Arguments:

64 Utilities - math

• vec1 (table) - a sequence of numbers
• vec2 (table) - a sequence of numbers

Example:

local area = utils.math:dot({2, 1}, {1, 2})
-- area == 4

65 Utilities - sequences

Utilities - sequences
Set of routines that manipulate sequences (tables that only use positive integer
indices and behave more like C arrays than hash maps)

Functions
utils.seq:flat(sequence)

Unpack embedded sequences into a copy of the parent one.

Returns:
• (table) - flattened sequence

Arguments:

• seq (table) - sequence to flatten

Example:

local flattened = utils.seq:flat({ 1, 2, {4, 8}, 16 })
-- flattened == { 1, 2, 4, 8, 16 }

utils.seq:fromStr(str)

Create a new character sequence from a string, so it can be used by table and
sequence utilities.

Returns:
• (table) - str converted to sequence of characters

Arguments:

• str (string) - string to chop into sequence

Example:

local strtab = utils.seq:fromStr('abcd')
-- strtab == { 'a', 'b', 'c', 'd' }

utils.table:join(sequence, separator)

Build a string from sequence elements and join them with separator .

Returns:
• (string) - joined table elements

Arguments:

• table (table)
• separator (string)

Example:

66 Utilities - sequences

local str = utils.seq:join({ 1, 2, 4, 8 }, '_')
-- str == '1_2_4_8'

utils.seq:slice(sequence, from, to)

Extract fragment of the given sequence .

Returns:
• (table) - extracted sequence

Arguments:

• sequence (table)
• from (number) - index of starting element, can be negative to count from the end
• to (number) - index of ending element, can be negative to count from the end

Example:

local fragment = utils.seq:slice({ 1, 2, 4, 8, 16 }, 3, -2)
-- fragment == { 4, 8 }

utils.seq:toReversed(sequence)

Creates new sequence with elements copied from source sequence , but reversed.

Returns:
• (table) - reversed sequence

Arguments:

• sequence (table) - sequence to reverse

Example:

local reverse = utils.seq:toReversed({ 1, 2, 4, 8 })
-- reverse == { 8, 4, 2, 1 }

67 Utilities - strings

Utilities - strings
These utilities supplement built-in string table.

Functions
utils.str:ltrim(str)

Create a copy of str with leading whitespace removed.

Returns:
• (string) - trimmed string

Arguments:

• str (string) - untrimmed string

Example:

local cleared = utils.str:ltrim(" aaaa ")
-- cleared == "aaaa "

utils.str:rtrim(str)

Create a copy of str with trailing whitespace removed.

Returns:
• (string) - trimmed string

Arguments:

• str (string) - untrimmed string

Example:

local cleared = utils.str:rtrim(" aaaa ")
-- cleared == " aaaa"

utils.str:trim(str)

Create a copy of str with leading and trailing whitespace removed.

Returns:
• (string) - trimmed string

Arguments:

• str (string) - untrimmed string

Example:

local cleared = utils.str:trim(" aaaa ")
-- cleared == "aaaa"

68 Utilities - strings

utils.str:lpad(str, length, char)

Pad str to length with character char .

Returns:
• string

Arguments:

• str (string)
• length (number)
• char (string, one character long)

Example:

local fixedSize = utils.str:lpad("short", 8, '_')
-- fixedSize == "___short"

utils.str:rpad(str, length, char)

Pad str to length with character char .

Returns:
• string

Arguments:

• str (string)
• length (number)
• char (string, one character long)

Example:

local fixedSize = utils.str:rpad("short", 8, '_')
-- fixedSize == "short___"

utils.str:contains(str, substr)

Check whether substr is contained within str .

Returns:
• boolean

Arguments:

• str (string)
• substr *(string)

Example:

69 Utilities - strings

local options = "rw,_netdev,user,noauto"
if utils.str:contains(options, "user") then

print("User access allowed")
end

utils.str:split(str, delimiter)

Splits str into a sequence of substrings. delimiter string supplies a set of
characters to use as substring limits, in strtok -like fashion.

Returns:
• table

Arguments:

• str (string)
• delimiter (string)

Example:

local s = utils.str:split("a:b:c::d:;ef;", ":;")
-- s == { "a", "b", "c", "d", "ef" }

utils.str:startsWith(str, prefix)

Returns true if the str string starts with prefix .

Returns:
• (boolean) - test result

Arguments:

• str (string)
• prefix (string)

Example:

local prefixMatches = utils.str:startsWith("% 1444", "% ")
-- prefixMatches == true

utils.str:endsWith(str, suffix)

Returns true if the str ends with suffix .

Returns:
• (boolean) - test result

Arguments:

• str (string)
• suffix (string)

70 Utilities - strings

Example:

local suffixMatches = utils.str:endsWith("120 kWh", " kWh")
-- suffixMatches == true

utils.str:randomUUID()

Creates a random-number based UUID.

Returns:
• (string) - generated UUID

Example:

local device1 = utils.str:randomUUID()
-- device1 == "8816972a-be78-44b1-bcff-b64d550b9540"

utils.str:random(length)

Creates a string of size length containing random characters [0-9A-Za-z] .

Returns:
• (string) - generated value

Arguments:

• length (number)

Example:

local id = utils.str:random(12)
-- id == "aphoh4eiXoo1"

utils.str:truncate(string, maxLength, suffix)

Truncates a string to size. If suffix is provided, it will be placed at the end of the
truncated string.

Returns:
• (string) - input cut to size

Arguments:

• string (string)
• maxLength (number)
• suffix (string)

Examples:

local label = utils.str:truncate("too long to fit", 11, "...")
-- label == "too long..."

71 Utilities - strings

function CustomDevice:onClick()
local label = self:getState()

-- text elements have a size limit!
label = utils.str:truncate(label, 32, "...")
self:getElement('status_label'):setValue('value', label)

end

72 Utilities - tables

Utilities - tables
JavaScript-like table manipulation routines.

NOTE: Lua tables which use indices other than positive integers are implemented
internally as hash maps and are unsorted. The order of elements can be different
every time program executes, so scripts have to cope with random element order.

Functions
utils.table:copy(table)

Returns a deep copy of given table.

Returns:
• (table) - a copy

Argument:

• table (table) - table to copy

Example:

local old = { 1, 2, { 'cc', 'dd' }, 12.8 }
local new = utils.table:copy(old)
new[2] = 3
-- old[2] == 2

utils.table:hasKey(table, key)

Checks if table[key] expression can be evaluated correctly and its value does not
equal to nil . Works even if object throws error when using non-existent table
subscript.

Returns:
• (boolean) - test result

Arguments:

• table (any) - any subscriptable object
• key (any) - possible subscript

Example:

if not utils.table:hasKey(virtual, 12) then
print('Warning, virtual device #12 does not exist')

end

utils.table:indexOf(table, value)

Find first occurence of an element equal to value in the table .

Returns:

73 Utilities - tables

• (number) - requested index, nil if does not exist

Arguments:

• table (table)
• value (any) - value to look for

Examples:

local idx = utils.table:indexOf({ 1, 2, 4, 8, 16 }, 8)
-- idx == 4

local idx = utils.table:indexOf({ 1, 2, 4, 8, 16 }, 3)
-- idx == nil

utils.table:reduce(table, callback, initialValue)

”Reduces” array contents to a single value by calling user-provided function
callback once for every table element.

Returns:
• (any) - final accumulator value

Arguments:

• table (table) - dataset to reduce

• callback (function) - performs the ”reduction”.

Returns:
◦ (any) - value to save to accumulator

Arguments:

◦ accumulator (any) - value returned by the previous call to the callback .

◦ value (any) - current table element

◦ key (any) - key of the value

◦ table (table) - a reference to the reduced table

• initialValue (any) - An optional parameter that will initialize accumulator value.
If not given, first table element is used instead and first iteration is skipped.

Iterative functions - intro
Shorthands for loops that iterate over all table elements.

All of these functions implement a specific protocol:

• prototype: utils.table:FUNCTION(table, callback)

• return values - function and callback dependent
• arguments:

74 Utilities - tables

◦ table (table) - table to iterate over

◦ callback (function) - function that will be called at most once for every table
element.

The callback functions are user-defined and have to follow this protocol:

• Prototype: function (value, key, table)

• Return value - iterative function dependent
• Arguments passed to the callback:

◦ value (any) - currently parsed table element
◦ key (any) - key of the parsed table element
◦ table (table) - reference to the table passed to the iterative function

Lua just pushes all arguments out, user callback can use any amount of them.
Simple callback that only needs the value can look like this:

-- return cube of a number value
local function cube(value)

return value^3
end

local cubes = utils.table:map(numbers, cube)

Table element's key can also be accessed by a callback by including it in the
argument list.

-- convert elements to string only if their key is a string
local function makeTypesConsistent(value, key)

if type(key) == type("")
then
return tostring(value)

else
return value

end
end

-- format some input data
input = utils.table:map(input, makeTypesConsistent)

Third argument, table , is passed to allow callbacks to directly access the table, like
this:

-- validate the response table
local function validate(value, key, table)

if key == 'stats'
then
-- having 'stats' implies having 'statsMeta'
if not utils.table:hasKey(table, 'statsMeta')
then

return false
end

end

return true
end

75 Utilities - tables

-- perform the validation
local ok = utils.table:every(input, validate)

The idea comes from JavaScript, refer to its documentation for more examples.

Iterative functions
utils.table:every(table, callback)

Returns true only if the callback returns true for all elements in table . The
function returns as soon as its return value is determined.

Can be used as a for-each loop: returning true continues loop and returning false
breaks the loop.

Returns:
• (bool) - test result

Arguments:

• table (table)
• callback (function) - returns a boolean

Examples:

local allNumbersPositive = utils.table:every({1, 2, -4, 8}, function (n)
return n > 0

end)

-- allNumbersPositive == false

local allDevicesOn = utils.table:every({ wtp[4], wtp[6] }, function (dev)
return dev:getValue('state') == true

end)

-- breakable forEach loop:
utils.table:every(inputData, function (v)

-- parse string values
if type(v) == type("")
then
parseValue(v)

-- continue loop
return true

else

-- break loop when non-string value is detected
return false

end
end)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#iterative_methods

76 Utilities - tables

utils.table:filter(table, callback)

Returns new table, that contains elements for which callback returned true

Returns:
• (table) - filtered input table

Arguments:

• table (table)
• callback (function) - returns a boolean

Example:

local evenNumbers = utils.table:filter({ 1, 2, 3, 4 }, function (n)
return n % 2 == 0

end)

-- evenNumbers == { 2, 4 }

utils.table:find(table, callback)

Returns first table element (and its key) for which callback returned true . The
function returns as soon as its return value is determined.

Returns:
• value (any)
• key (any)

Arguments:

• table (table)
• callback (function) - returns a boolean

Example:

local smallestEven, key = utils.table:find({ 1, 3, 2, 4 }, function (n)
return n % 2 == 0

end)

-- smallestEven == 2, key == 3

utils.table:forEach(table, callback)

Calls function callback once for every element in table . If loop breaking is
required, use utils.table:every instead.

Arguments:

• table (table)
• callback (function)

Example:

77 Utilities - tables

-- list virtual devices
utils.table:forEach(virtual, function (dev, id)

utils.printf("Virtual device '%s' has id #%d", dev, id)
end)

utils.table:group(table, callback)

Calls function callback for each table element to determine its group. A new table,
containing elements from table grouped into tables, is returned.

Returns:
• (table) - contains selected groups in tables

Arguments:

• table (table) - values to group
• callback (function) - returns anything that can be used as a table key

Example:

local input = {
{ number = 1, name = "Jeden" },
{ number = 2, name = "Zwei" },
{ number = 3, name = "Три" },
{ number = 4, name = "Négy" }

}

local grouped = utils.table:group(input, function (row)
if row.number % 2 == 1 then
return "odd"

else
return "even"

end)

variable grouped will contain:

{
odd = {
{ number = 1, name = "Jeden" },
{ number = 3, name = "Три" }

},
even = {

{ number = 2, name = "Zwei" },
{ number = 4, name = "Négy" }

}
}

utils.table:map(table, callback)

Calls function callback for each table element to determine its replacement. A new
table, containing values returned by callback , is returned.

Returns:
• (table) - contains values returned by callback

78 Utilities - tables

Arguments:

• table (table)
• callback (function) - returns anything that can be stored in a table

Example:

local squares = utils.table:map({ 1, 2, 3, 4, 5 }, function (n) return n^2 end)

-- squares == { 1, 4, 9, 16, 25 }

utils.table:some(table, callback)

Returns false only if the callback returns false for every element of the table.
The function returns as soon as its return value is determined.

Returns:
• (boolean) - test result

Arguments:

• table (table)
• callback (function) - returns boolean

Example:

local thereAreNegativeNumbers = utils.table:some({ 1, 2, -3, 4 }, function (v)
return v < 0

end)

-- thereAreNegativeNumbers == true

79 Utilities - time

Utilities - time
Methods
utils.time:fromISO(iso)

Converts ISO time string to Unix timestamp

Returns:
• (number) - Unix timestamp

Arguments:

• iso (string) - time string to convert

Example:

utils.time:fromISO('1986-04-26T01:23:00')

utils.time:toISO(unix)

Converts Unix timestamp to ISO time string

Returns:
• (string) - ISO time string

Arguments:

• unix (number) - Unix timestamp

Example:

utils.time:toISO(1688554570)

utils.time:toTimeOfDay(timeString)

Converts hour:minute string to a TOD value (minutes since day started)

Returns:
• (number) - minutes since midnight, in 0–1439 range

Arguments:

• timeString (string) - e.g. '14:27'

Example:

local tod = utils.time:toTimeOfDay('15:18')
-- tod == 918

80 Utilities - URL manipulation

Utilities - URL manipulation
Refer to RFC 3986 for more information.

Percent-encoding
This encoding method is widely used in URIs and HTTP forms. Refer to section 2.1
of the RFC 3986 for more information.

utils.url:encode(str)

Performs percent-encoding on str . This function encodes spaces as %20 .

Returns:
• encoded (string)

Arguments:

• str (string) – any string

Example:

local q = utils.url:encode("it's over")

-- q = "it%27s%20over"

utils.url:encodePlus(str)

Performs percent-encoding on str . This function encodes spaces as + .

Returns:
• encoded (string)

Arguments:

• str (string) – any string

Example:

local q = utils.url:encode("it's so over")

-- q = "it%27s+so+over"

utils.url:decode(str)

Performs percent decoding on str . This function interprets only %20 as a space.

Returns:
• decoded (string)

Arguments:

• str (string) – percent-encoded string

https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986#section-2.1

81 Utilities - URL manipulation

Example:

local q = utils.url:decode("we%20are%20back%21")

-- q = "we are back!"

utils.url:decodePlus(str)

Performs percent decoding on str . This function interprets both %20 and + as a
space.

Returns:
• decoded (string)

Arguments:

• str (string) – percent-encoded string

Example:

local q = utils.url:decodePlus("we%20are+soo+back%21")

-- q = "we are soo back!"

URL parsing
utils.url:getScheme(url)

Extracts the scheme component of the url .

Returns:
• scheme (string)
Arguments:

• url (string) – a valid URL

Example:

local scheme = utils.url:getScheme("http://www.project.d/")
-- scheme = "http"

utils.url:getHost(url)

Extracts the host subcomponent of the authority component.

Returns:
• host (string)
Arguments:

• url (string) - a valid URL

82 Utilities - URL manipulation

Example:

local host = utils.url:getHost("http://www.project.d/")
-- host = "www.project.d"

utils.url:getPort(url, default)

Extracts the port subcomponent of the authority component. If the port is present in
the URL, it is returned as a number. Otherwise, the default is returned without any
conversions.

Returns:
• port (any) – number or type(default)

Arguments:

• url (string) – a valid URL
• default (any) – a value to return if the port is not present

Example:

local port

port = utils.url:getPort("http://www.project.d:8080/")
-- port = 8080

port = utils.url:getPort("http://www.project.d/")
-- port = nil

port = utils.url:getPort("http://www.project.d/", 80)
-- port = 80

utils.url:getPath(url)

Extracts the path component.

Returns:
• path (string) – empty string if not present

Arguments:

• url (string) – a valid URL

Example:

local path

path = utils.url:getPath("http://www.project.d")
-- path = ""

path = utils.url:getPath("http://www.project.d/")
-- path = "/"

path = utils.url:getPath("http://www.project.d/index.html")
-- path = "/index.html"

83 Utilities - URL manipulation

utils.url:getQueryParams(url)

Extracts the query component, decodes it and puts it in a table. The + signs are not
expanded to spaces.

Returns:
• query (table) – a map of decoded query parameters
Arguments:

• url (string) – a valid URL

Example:

local query =
utils.url:getQueryParams("http://www.project.d?q=uphill%20results")

-- query = { q = "uphill results" }

utils.url:stripQueryParams(url)

Returns url with query component removed.

Returns:
• stripped url (string)
Arguments:

• url (string) - a valid URL

Example:

local clean =
utils.url:stripQueryParams("http://www.project.d?q=downhill%20results")

-- clean = "http://www.project.d"

84 HTTP Client

HTTP Client
Global scope objects which allow user to send http requests.

Clients are exposed in the key-based container of objects: http_client . Container
store clients in the form of a key corresponding to the client ID. For example, when
you want to refer to a Lua HTTP Client with ID 4 you should use: http_client[4]
object.

Attempting to reference a nonexistent client or set the wrong value type will result
in a script error.

Properties
Http clients properties can't be changed via lua scripts but they will be used in some
cases when sending requests.

Available Properties
• default URL (string)

Default url for request that will be used if not specified in GET , POST , DELETE ,
PATCH , PUT methods.

• default request body (string)

Default request body that will be used if body() method not called.

• default headers (map string:string)

Set of default headers that will be used for each request. Header values can be
overriden or extended via header() method.

For example:

local http = http_client[config.client_id]
-- headers: "Content-Type: text/plain" (default)

http:header("Content-Type", "application/json")
-- headers: "Content-Type: application/json" (overridden)

http:send()
-- headers: "Content-Type: text/plain" (back to default)

Content-Type HTTP header can also be changed using contentType() method,
which has the highest priority.

Header keys are case insesitive.

• default query parameters (map string:string)

Set of default query parameters that will be appended to url for each request.
Query parameter can be overriden or extended via queryParam() method.

For example:

85 HTTP Client

local http = http_client[config.client_id]
-- params: format=csv (default)

http:queryParam("format", "json")
-- params: format=json (overridden)

http:send()
-- params: format=csv (back to default)

Query parameters are case sensitive.

Methods
• GET(url)

Sets the request method to GET, with optional url.

◦ If URL not provided, default url will be used.
◦ If only path (string that starts with /) provided it will be concatented with
default url. eg. GET("/test") will add /test to default url for this single
request.

◦ If URL provided, it will replace default url for this single request.
Returns:
◦ (userdata) - http client reference for chained calls

Arguments:

◦ url (string, optional) - url on which request should be sent.

• POST(url)

Sets the request method to POST, with optional url.

◦ If URL not provided, default url will be used.
◦ If only path (string that starts with /) provided it will be concatented with
default url. eg. POST("/test") will add /test to default url for this single
request.

◦ If URL provided, it will replace default url for this single request.
Returns:
◦ (userdata) - http client reference, for chained calls

Arguments:

◦ url (string, optional) - url on which request should be sent.

• DELETE(url)

Sets the request method to DELETE, with optional url.

◦ If URL not provided, default url will be used.
◦ If only path (string that starts with /) provided it will be concatented with
default url. eg. DELETE("/test") will add /test to default url for this single
request.

◦ If URL provided, it will replace default url for this single request.

86 HTTP Client

Returns:
◦ (userdata) - http client reference, for chained calls

Arguments:

◦ url (string, optional) - url on which request should be sent.

• PATCH(url)

Sets the request method to PATCH, with optional url.

◦ If URL not provided, default url will be used.
◦ If only path (string that starts with /) provided it will be concatented with
default url. eg. PATCH("/test") will add /test to default url for this single
request.

◦ If URL provided, it will replace default url for this single request.
Returns:
◦ (userdata) - http client reference

Arguments:

◦ url (string, optional) - url on which request should be sent.

• PUT(url)

Sets the request method to PUT, with optional url.

◦ If URL not provided, default url will be used.
◦ If only path (string that starts with /) provided it will be concatented with
default url. eg. PUT("/test") will add /test to default url for this single
request.

◦ If URL provided, it will replace default url for this single request.
Returns:
◦ (userdata) - http client reference, for chained calls

Arguments:

◦ url (string, optional) - url on which request should be sent.

• header(key, value)

Adds HTTP header to next request.

Returns:
◦ (userdata) - http client reference for chained calls

Arguments:

◦ key (string) - header name
◦ value (string) - header value

• queryParam(key, value)

Adds a query parameter to next request.

Returns:

87 HTTP Client

◦ (userdata) - http client reference for chained calls

Arguments:

◦ key (string) - query parameter name
◦ value (string) - query parameter value

• body(payload)

Sets request body for next request.

Returns:
◦ (userdata) - http client reference for chained calls

Arguments:

◦ payload (string) - request payload

• contentType(type)

Sets content type for next request.

Returns:
◦ (userdata) - http client reference for chained calls

Arguments:

◦ type (string) - type of request content

• timeout(sec)

Sets next request timeout.

Returns:
◦ (userdata) - http client reference for chained calls

Arguments:

◦ sec (number) - number of seconds for request timeout

• send()

Sends prepared request.

• hasResponse()

Checks whether client received response from server. If response is ready it
caches the request result (response).

Returns:
◦ (boolean)

• hasFailure()

Checks whether client request failed, e.g. due to invalid url. If request failed it
caches the request result (failure).

Returns:
◦ (boolean)

88 HTTP Client

• response()

Returns last response body received from server. (from cache)

Returns:
◦ (string)

• status()

Returns last response status received from server, e.g. 200 if request OK. (from
cache)

Returns:
◦ (number)

• failureCause()

Returns the cause of last request failure. (from cache)

Returns:
◦ (string)

• onMessage(function(status, bodyOrFailureCause, requestUrl,

responseHeaders) end)

Callback hook. Calls function passed in argument on http message received. It
caches the request result.

Returns:
◦ (userdata) - http client reference for chained calls

Arguments:

◦ function (function, required) - callback function which should be called

Arguments:

• status (number) - response status received from server, e.g. 200 if request
OK

• bodyOrFailureCause (string) - response body received from server on
success, failure cause on failure

• requestUrl (string) - request url matching current response, can be used to
select from multiple responses using single callback hook.

• responseHeaders (table, key-value container) - response headers in form of
lua table (key = header name, value = header value)

Examples
All methods in HTTP Client which return a http client reference can be chained.

89 HTTP Client

Send GET request to custom.server.com at 19:00

-- with chained calls
if dateTime:changed() then

if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
http_client[1]

:GET("https://custom.server.com")
:send()

end
end

-- without chained calls
if dateTime:changed() then

if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
http_client[1]:GET("https://custom.server.com")
http_client[1]:send()

end
end

POST data to custom.server.com at sunrise

-- without chained calls
if event.type == "sunrise"
then

local http = http_client[1]
http:POST("https://custom.server.com")
http:header("Authorization", "Tk63TBJv5hhdnu5UN_F2dgj")
http:header("Connection", "keep-alive")
http:contentType("text/plain")
http:body("request body")
http:send()

end

-- with chained calls
if event.type == "sunrise"
then

http_client[1]
:POST("https://custom.server.com")
:header("Authorization", "Tk63TBJv5hhdnu5UN_F2dgj")
:header("Connection", "keep-alive")
:queryParam("param", "value")
:contentType("text/plain")
:body("request body")
:send()

end

POST data at sunrise with default values

Here we assume that at least default url is set for http_client[1] .

All default values will be used that are set for this client, i.e.: url , headers , body

if event.type == "sunrise" then
http_client[1]:POST():send()

end

90 HTTP Client

Handle received response

if http_client[1]:hasResponse()
then

print("Response from client 1:")
print(http_client[1]:response())

print("Status from client 1:")
print(http_client[1]:status())

end

Handle request failure

if http_client[1]:hasFailure()
then

print("Request from client 1 failed!")
print(http_client[1]:failureCause())

end

Handle response using a callback

http_client[1]:onMessage(
function(status, bodyOrFailureCause, requestUrl, responseHeaders)
if status == 200 then

print ("Request succeeded with status")
print (status)
print ("Response from server:")
print (bodyOrFailureCause)

else
print ("Request failed with status")
print (status)
print ("Failure cause:")
print (bodyOrFailureCause)

end

print("Url requested:" .. requestUrl)
print("Response headers:")
utils.table:forEach(responseHeaders, function (value, name)

utils:printf("%s: %s", name, value)
end)

end)

91 HTTP Server

HTTP Server
Global scope object which allow user to receive custom http requests and generate
custom responses. In order to trigger automation with http server calls inside, you
need to send HTTP request to /api/v1/lua/http-server/* where * means you can
put any suffix in url you want and have automation with attached request handler.

Features:

• supported http methods: GET, POST, PUT, PATCH, DELETE
• request path routing with dedicated handler per path/method
• url variable arguments
• json or raw string request/response content type
Authorization is needed while sending requests. There are two types of auth
available:

• standard user login process with JWT (you will need to refresh it manually using
token refresh endpoint)

• static API-TOKEN (via REST api) which doesnt need refreshing - is valid as long
as exists in configuration. (Can be created using the API)

There two methods of token provision:

• use Authorization header with value of token (without Bearer prefix)
• use access_token url query parameter with value of token

Http server can generate automatic responses in some cases:

• 404 Not Found if invalid url prefix was sent in request.

• 404 Results Not Found if valid request was received but there wasnt handler
declared for this url/method.

• 500 Server Error if handler failed to execute. (check response body for error
details.)

• 501 Not Implemented if handler is declared but no response was generated by
this handler.

Server is exposed as object: http_server .

Properties
Http server doesnt have properties.

Methods
• on(method, path, handler)

Router hook. Attach handler to specific request method and path

Returns:
◦ http server reference

Arguments:

92 HTTP Server

◦ method (string, required) - case insensitive method name, one of GET , POST ,
PUT , PATCH , DELETE .

◦ path (string, required) - url template with or without variable arguments.

The /api/v1/lua/http-server url prefix will be removed. eg. when you
request /lua/http-server/my-endpoint/5 it will get forwarded as
/my-endpoint/5 url.

You can catch 5 as parameter (eg. named id) – put /my-endpoint/:id as path
(note declaration of variable name :id) and obtain data via
request:argument("id") method in handler.

◦ handler (function, required) - callback function which should be message
received.

Arguments:

• request (HttpServerRequest, required) - received request, see
HttpServerRequest description below for details.

• response (HttpServerResponse, required) - used to generate response, see
HttpServerResponse description below for details.

93 HttpServerRequest

HttpServerRequest
This object (lua table) is passed to handler and can be used to read incoming http
request.

Methods
• url()

Returns requested url path.

Returns:
◦ (string)

• method()

Returns request method name, one of GET, POST, PUT, PATCH, DELETE.
Returns:
◦ (string)

• argument(name)

Returns variable argument, declared in request handler url template or nil if not
found.

Returns:
◦ (string)

Arguments:

◦ name (string, required) - name of argument to get, declared in request handler
url template

• queryParam(name)

Returns url query parameter or nil if not found.

Returns:
◦ (string)

Arguments:

◦ name (string, required) - name of query parameter to get

• body()

Returns request body.

Returns:
◦ (string)

94 HttpServerResponse

HttpServerResponse
This object (lua table) is passed to handler and can be used to create outgoing http
response. Methods which return reference can be used in chain-calls.

Methods
• status(code)

Sets http response status. Using this is optional since calling
response:body(...) method automatically sets code as 200 if none was set.

Returns:
◦ (userdata) http server response reference, for chained calls

Arguments:

◦ code (number, required) - Http response status, should be one of 2xx, 4xx or
5xx.

• body(content)

Sets http response body (content). Automatically sets status code to 200 if none
was set.

Returns:
◦ (userdata) http server response reference, for chained calls

Arguments:

◦ content (string, required) - String representation of body eg. raw text or
serialized json.

Examples
All methods in HTTP Server which return http server reference can be called
successively without calling http_server object every time.

Handle requests

Sending request to /api/v1/lua/http-server/hello/world will create response
with message.

http_server:on("GET", "/hello/world", function(request, response)
response:status(200):body("Hello world! You've reached GET handler.")

end)

http_server:on("POST", "/hello/world", function(request, response)
response:status(200):body("Hello world! You've reached POST handler.")

end)

http_server:on("PUT", "/hello/world", function(request, response)
response:status(200):body("Hello world! You've reached PUT handler.")

end)

http_server:on("PATCH", "/hello/world", function(request, response)

95 HttpServerResponse

response:status(200):body("Hello world! You've reached PATCH handler.")
end)

http_server:on("DELETE", "/hello/world", function(request, response)
response:status(200):body("Hello world! You've reached DELETE handler.")

end)

Handle requests using local functions

Sending request to /api/v1/lua/http-server/hello/world will create response
with message.

local function handleRequest(request, response)
response

:status(200)
:body("Hello world! You've reached " .. request:method() .. " handler.")

end

http_server:on("GET", "/hello/world", handleRequest)
http_server:on("POST", "/hello/world", handleRequest)
http_server:on("PUT", "/hello/world", handleRequest)
http_server:on("PATCH", "/hello/world", handleRequest)
http_server:on("DELETE", "/hello/world", handleRequest)

Handle url template arguments

Sending request to /api/v1/lua/http-server/hello/sinum/from/admin will create
response with message: Hello sinum was sent by admin!

http_server:on("GET", "/hello/:thing/from/:user", function(request, response)
local thing = request:argument("thing")
local user = request:argument("user")

response:body("Hello " .. thing .. " was sent by " .. user .. "!")
end)

Handle url query parameters

Sending request to /api/v1/lua/http-server/hello?user=admin&what=sinum will
create response with message: Hello sinum was sent by admin!

http_server:on("GET", "/hello", function(request, response)
local what = request:queryParam("what")
local user = request:queryParam("user")

response:body("Hello " .. what .. " was sent by " .. user .. "!")
end)

Handle json body in request and response

Request to /api/v1/lua/http-server/body-example with body containing:

96 HttpServerResponse

{
"name": "External client",
"data": [192, 168, 1, 1]

}

will cause printing name and data fields to automation log.

The response will contain:

{
"name": "Sinum",
"data": [66, 77, 88, 99],
"success": true,
"reason": null

}

Code:

http_server:on("POST", "/body-example", function(request, response)

local body = JSON:decode(request:body())

-- Note: Lua sequence indices start at 1!
local dataString = string.format("%d.%d.%d.%d",

body.data[1], body.data[2], body.data[3], body.data[4])
print("Received request from " .. body.name .. ", data " .. dataString)

local responseBody = {
name = "Sinum",
data = {

66,
77,
88,
99

},
success = true
reason = nil

}

response:body(JSON:encode(responseBody))
end)

97 ICMP Ping

ICMP Ping
Global scope utility which allow user to ping remote host, exposed as the ping
object.

It may be used to check if internet connection is available, check if device is turned
on or detect if certain local ip addresses are reachable (eg. when smartphone is
reachable at local network, this may mean you are at home).

Methods
• send(destination, timeout, dataSize)

Sends ICMP ping request to destination.

Returns:
◦ (userdata) - ping object reference for chained calls

Arguments:

◦ destination (string, required) - hostname or ip of destination.
◦ timeout (integer, optional, [0-30], default: 5) - maximum waiting time for reply
in seconds.

◦ dataSize (integer, optional, [0-256], default: 32) - size of random data to send
in request.

• onReply(callback)

Callback hook. Calls function passed in argument on ping response or error
received.

Returns:
◦ (userdata) - ping object reference for chained calls

Arguments:

◦ callback (function, required) - callback function used as response handler.

Arguments:

• success (bool, required) - status flag, on successful ping equals true , on
fail equals false .

• errorMessage (string, required) - error message, describes why ping failed.
Empty on success.

• elapsed (integer, required) - time spent while processing ping in
milliseconds, either successful or not.

• destination (string, required) - always equal to destination used in send
function. May be used to distinguish between many responses at the same
time.

• replyFrom (string, required) - hostname or ip of remote which responsed to
ping request.

• timeToLive (integer, required) - time to live parameter, may be used
measure how many router 'hops' was required to reach destination

98 ICMP Ping

Examples
All methods in Ping which return ping object reference can be called successively
without calling ping every time.

Ping local IP address at 19:00

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
ping:send("192.168.1.200")

end
end

Ping two remote hosts every minute

if dateTime:changed() then
ping:send("192.168.1.1"):send("192.168.1.2")

end

Handle response with a callback

ping:onReply(
function(success, errorMessage, elapsed, destination, replyFrom, timeToLive)
if success
then

print("Success!")
else

print("Failed! Reason:")
print(errorMessage)

end

-- Print diagnostic data
print("Elapsed:", elapsed)
print("Destination:", destination)
print("Reply From:", replyFrom)
print("TTL:", timeToLive)

-- You may use destination to distinguish responses from different hosts

local devices = {
mike = '192.168.1.100',
lucy = '192.168.1.200'

}

if destination == devices.mike
then

if success
then

print("Mike phone is reachable. Mike is at home.")
else

print("Mike phone is not reachable. Mike is out.")
end

elseif destination == devices.lucy
then

if success
then

99 ICMP Ping

print("Lucy phone is reachable. Lucy is at home.")
else

print("Lucy phone is not reachable. Lucy is out.")
end

end
end)

100 Mqtt Client

Mqtt Client
Global scope objects which allow user to exchange mqtt messages. (Currently mqtts
and mqtt-over-ws is not supported)

Clients are exposed in the key-based container of objects: mqtt_client . Container
store clients in the form of a key corresponding to the client ID. For example, when
you want to refer to a Lua Mqtt Client with ID 4 you should use: mqtt_client[4]
object.

Attempting to reference a nonexistent client or set the wrong value type will result
in a script error.

Subscriptions should be configured by REST.

Properties
Mqtt clients properties can't be changed directly by lua scripts. You should use
methods and callback hooks to exchange messages and REST API to configure client
(eg. subscriptions).

Methods
• isConnected()

Checks whether client successfully connected to broker.

Returns:
◦ (boolean)

• isSubscribed(topic)

Checks whether client successfully subscribed to desired topic.

Returns:
◦ (boolean)

Arguments:

◦ topic (string, required) - topic to check.

• publish(topic, payload, qos, retain)

Publishes message on topic with desired payload, qos and retain.

Returns:
◦ (userdata) - mqtt client reference for chained calls

Arguments:

◦ topic (string, required) - topic on which message should be published.
◦ payload (string, required) - message payload.
◦ qos (integer, required, [0-2]) - message qos.
◦ retain (string, required) - message retain flag.

101 Mqtt Client

• onConnected(function() end)

Callback hook. Calls function passed in argument on successful connection to
broker (whenCONACK received).

Returns:
◦ (userdata) - mqtt client reference for chained calls

Arguments:

◦ function (function, required) - callback function which should be called on
successful connection.

• onDisconnected(function(error) end)

Callback hook. Calls function passed in argument on graceful disconnect or
forced disconnect (eg. due to network error).

Returns:
◦ (userdata) - mqtt client reference for chained calls

Arguments:

◦ function (function, required) - callback function which should be called on
disconnect or error.

Arguments:

• error (bool, required) - disconnection status - graceful (false) or error
(true).

• onSubscriptionEstablished(callback)

Callback hook. Calls function passed in argument on successful subcribe to topic.

Returns:
◦ (userdata) - mqtt client reference for chained calls

Arguments:

◦ callback (function, required) - callback function which should be called on
subscription established.

Arguments:

• topic (string, required) - topic which was subscribed.

• onMessage(function(topic, payload, qos, retain, dup) end)

Callback hook. Calls function passed in argument on message received at
subscribed topics.

Returns:
◦ (userdata) - mqtt client reference for chained calls

Arguments:

◦ function (function, required) - callback function used as message handler.

Arguments:

• topic (string, required) - received message topic.

102 Mqtt Client

• payload (string, required) - received message payload.

• qos (integer, required, [0-2]) - received message qos level.

• retain (bool, required) - received message retain flag.

• dup (bool, required) - received message duplicate flag.

Examples
All methods inMqtt Client which return mqtt client reference can be called
successively without calling mqtt_client container every time.

Receive message on subscribed topic.

mqtt_client[4]:onMessage(function(topic, payload, qos, retain, dup)
if topic == "stat/tasmota_D9360D/POWER" then
if payload == "ON" then

wtp[68]:setValue("state", true)
else

wtp[68]:setValue("state", false)
end

elseif topic == "stat/tasmota_3C3AF1/POWER" then
if payload == "ON" then

wtp[69]:setValue("state", true)
else

wtp[69]:setValue("state", false)
end

elseif topic == "stat/tasmota_403B44/POWER" then
if payload == "ON" then

wtp[87]:setValue("state", true)
else

wtp[87]:setValue("state", false)
end

elseif topic == "zigbee2mqtt/Button" then
data = JSON:decode(payload)

if data["action"] ~= nil then
if data["action"] == "1_single" then

wtp[70]:call("toggle")
elseif data["action"] == "2_single" then

wtp[69]:call("toggle")
elseif data["action"] == "3_single" then

wtp[68]:call("toggle")
end

end
end

end)

Publish message on topic ”greetings”

if dateTime:changed() then
mqtt_client[4]:publish("greetings", "I am still alive mate!", 0, false)

end

103 Mqtt Client

Catch connect and disconnect

mqtt_client[4]:onConnected(function()
print("Client with ID 4 connected to broker!")

end)

mqtt_client[4]:onDisconnected(function(error)
if error then
print("Client with ID 4 lost connection due to error.")

else
print("Client with ID 4 gracefully disconnected from broker.")

end
end)

Catch subscription establish and publish data read request

mqtt_client[4]:onSubscriptionEstablished(function(topic)
if topic == "/my-device/out" then
mqtt_client[4]:publish("/my-device/in", "data-read-request", 0, false)

end
end)

104 Wake On Lan

Wake On Lan
Global scope utility which allow user to send WakeOnLan magic packet to wake up
device from standby, exposed as: wakeOnLan object.

NOTE: Remote device needs to support this function and you router should allow
sending WOL packets.

NOTE: WOL Protocol does not support confirmations, so you can't check if device is
turned on - but, you can use ICMP Ping utility in this case.

Properties
Wake On Lan utility doesn't have properties.

Methods
• send(destination)

Sends WOL packet to destination.

Returns:
◦ (userdata) - wake on lan object reference for chained calls

Arguments:

◦ destination (string, required) - MAC Address of destination device.

Examples
All methods in wake on lan which return wake on lan object reference can be
called successively without calling wakeOnLan every time.

Wake up devices at 19:00

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0
then
wakeOnLan

:send("aa:bb:cc:dd:ee:ff")
:send("A1:B2:C3:D4:E5:F6")

end
end

105 EnergyCenter - FlowMonitor

EnergyCenter - FlowMonitor
The Goal of this module is to provide an easy to understand and visualize way of
displaying the current Power Distribution coming from and to different sources,
such as pv panels (inverter), grid, building and batteries etc.

Power distribution sources have to be associated using web application in order to
get proper calculations available. Can be edited via REST API or a web application
served through the central unit server.

Data access is possible via REST API, web app or directly from scripts using
flow_monitor object eg. flow_monitor:changed() . Flow Monitor has global scope
and is visible in all executions contexts.

Methods
• changed()

Checks if any data has changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of object has recently changed (thus is source of
event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string) - name of property

Properties
Properties direct access is not allowed. You can get values using getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• summary.building.available (boolean, read-only)

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

106 EnergyCenter - FlowMonitor

Describes if building power distribution data is available. Becomes available if
grid energy meter, pv or battery sources are configured (associated devices).

• summary.building.value (number, read-only)

Current building power distribution. Only positive values are possible. The value
represents the current consumption of the building.

Unit: mW

• summary.grid.available (boolean, read-only)

Describes if grid power distribution data is available. Becomes available if grid
energy meter source is configured (associated device).

• summary.grid.value (number, read-only)

Current grid power distribution. Positive value represents the power that is
currently being imported from grid. Negative value represents the power that is
currently being exported to the grid.

Unit: mW

• summary.pv.available (boolean, read-only)

Describes if pv power distribution data is available. Becomes available if pv
panels (inverter) source is configured (associated device).

• summary.pv.value (number, read-only)

Current pv power distribution. Only positive values are possible. The value
represents the current production of the pv panels.

Unit: mW

• summary.battery.available (boolean, read-only)

Describes if battery power distribution data is available. Becomes available if
battery source is configured (associated device).

• summary.battery.value (number, read-only)

Current battery power distribution. Positive value represents the power that is
currently used to charge battery. Negative value represents the power that is
currently used to discharge battery.

Unit: mW

• summary.battery.state_of_charge.available (boolean, read-only)

Describes if battery state of charge data is available. Becomes available if battery
device exposes such data.

• summary.battery.state_of_charge.value (number, read-only)

Current battery state of charge.

Unit: %

• flow.pv_to_battery.value (number, read-only)

Represents value of current power flow from pv panels to battery. Only positive
values are possible.

Unit: mW

107 EnergyCenter - FlowMonitor

• flow.pv_to_building.value (number, read-only)

Represents value of current power flow from pv panels to building. Only positive
values are possible.

Unit: mW

• flow.pv_to_grid.value (number, read-only)

Represents value of current power flow from pv panels to grid. Only positive
values are possible.

Unit: mW

• flow.grid_to_battery.value (number, read-only)

Represents value of current power flow from grid to battery (positive value) or
from battery to grid (negative value).

Unit: mW

• flow.grid_to_building.value (number, read-only)

Represents value of current power flow from grid to building. Only positive
values are possible.

Unit: mW

• flow.battery_to_building.value (number, read-only)

Represents value of current power flow from battery to building. Only positive
values are possible.

Unit: mW

• building_consumption_details.rest (number, read-only)

Represents computed value of power consumption of devices that don't provide
their individual power consumption data. Only positive values are possible.

Unit: mW

• building_consumption_details.by_devices (table, read-only)

Represents collection of devices that provide their power consumption.

Unit: mW

Examples
Turn off relay when you start importing power from grid

if flow_monitor:changedValue("summary.grid.value") then
local gridValue = flow_monitor:getValue("summary.grid.value")

if gridValue > 0 and wtp[33]:getValue("state") then
wtp[33]:call("turn_off")

end
end

108 EnergyCenter - FlowMonitor

Turn on relay if there is pv production and it is being exported to grid

if flow_monitor:changedValue("flow.pv_to_grid.value") then
local flowValue = flow_monitor:getValue("flow.pv_to_grid.value")

if flowValue > 0 and not wtp[33]:getValue("state") then
wtp[33]:call("turn_on")

end
end

109 EnergyCenter - EnergyPrices

EnergyCenter - EnergyPrices
This module allows obtaining energy prices downloaded from various portals
(configured via web application) or setting them manually via LUA.

The way prices are accessed can be edited via REST API or a web application served
through the central unit server.

Data access is possible via REST API, web app or directly from scripts using
energy_prices object eg. energy_prices:changed() . Energy Prices has global
scope and is visible in all executions contexts.

Methods
• changed()

Checks if any data has changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of object has recently changed (thus is source of
event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string) - name of property

• setValue(property_name, property_value)

Sets value for object property.

Returns:
◦ (userdata) - reference to Energy Prices object, for call chains

Arguments:

◦ property_name (string) - name of property
◦ property_value (any) - property type dependant value which should be set

• isHourPriceAvailable(hour)

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

110 EnergyCenter - EnergyPrices

Check if energy price for hour is available. Returns false if hour is out of range,
price for hour is not yet set or downloaded or Energy Prices feature is disabled.

Returns:
◦ (boolean)

Arguments:

◦ hour (integer) - hour in range [0, 23]

• getHourPrice(hour)

Returns energy price for hour . If access_type is set to api this method returns
energy price downloaded from external API selected via web application. If
access_type is set to lua it returns energy price set via LUA script.
NOTE: Returns 0 when price is not yet set or downloaded or Energy Prices
feature is disabled.

Return:
◦ (float) or (nil) - energy price at hour . Return nil if hour is out range.

Arguments:

◦ hour (integer) - hour in range [0, 23]

• setStaticPrice(price)

Sets same energy price for every hour in a day.

Returns:
◦ (userdata) - reference to Energy Prices object, for call chains

Arguments:

◦ price (float) - energy price to set

• setHourPrice(hour, price)

Sets energy price for one hour .

Returns:
◦ (userdata) - reference to Energy Prices object, for call chains

Arguments:

◦ hour (integer) - selected hour in range [0, 23]
◦ price (float) - energy price to set

• setHoursPrice(hours, price)

Sets single energy price for multiple hours

Returns:
◦ (userdata) - reference to Energy Prices object, for call chains

Arguments:

◦ hour (table) - table of hours in range [0, 23]

111 EnergyCenter - EnergyPrices

◦ price (float) - energy price to set

• setPrices(prices)

Sets prices.

Returns:
◦ (userdata) - reference to Energy Prices object, for call chains

Arguments:

◦ prices (table) - table of prices. If it's shorter than 24 elements only prices for
first hours will be set.

Properties
Properties direct access is not allowed. You can get values using getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• enabled (boolean, read-only)

Informs if Energy Prices feature is enabled via web application.

• access_type (string, read-only)

Current method to obtain prices. Possible values are:

◦ api - prices are downloaded from selected portal
◦ lua - prices are set via LUA script

• country (string, read-only)

Country for which prices are downloaded via selected portal.
NOTE: This parameter is not accessible when access_type is set to lua .

• api_name (string, read-only)

Name of portal to download prices from.
NOTE: This parameter is not accessible when access_type is set to lua .

• currency (string)

Currency in which prices are represented.
NOTE: This parameter is read-only when access_type is set to api .

112 EnergyCenter - EnergyStorage

EnergyCenter - EnergyStorage
The Goal of this module is to provide an easy to understand and visualize way of
displaying the current Energy Storage (Battery) data.

Battery device have to be associated using web application in order to get proper
calculations available. Can be edited via REST API or a web application served
through the central unit server.

Data access is possible via REST API, web app or directly from scripts using
energy_storage object eg. energy_storage:changed() . Energy Storage has global
scope and is visible in all executions contexts.

Methods
• changed()

Checks if any data has changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of object has recently changed (thus is source of
event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string) - name of property

Properties
Properties direct access is not allowed. You can get values using getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• available (boolean, read-only)

Describes if energy storage data is available. Becomes available if battery device
association is configured (associated devices).

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

113 EnergyCenter - EnergyStorage

• status (string, read-only)

Current status of energy storage. Possible values: idle, charging, discharging

• power (number, read-only)

Current battery power distribution. Positive value represents the power that the
battery is currently charged with. Negative value represents the power that the
battery is currently discharged with.

Unit: mW

• energy_charged_today (number, read-only)

Daily sum of energy the battery was charged with.

Unit: Wh

• energy_discharged_today (boolean, read-only)

Daily sum of energy the battery was discharged with.

Unit: Wh

• state_of_charge.available (boolean, read-only)

Describes if battery state of charge data is available. Becomes available if battery
device exposes such data.

• state_of_charge.value (number, read-only)

Current battery state of charge.

Unit: %

Examples
Turn off relay when battery is discharging and level drops to 20%

if energy_storage:changedValue("state_of_charge.value") then
local level = energy_storage:getValue("state_of_charge.value")

if level < 10 and wtp[33]:getValue("state") then
wtp[33]:call("turn_off")

end
end

114 EnergyCenter - EnergyConsumption

EnergyCenter - EnergyConsumption
The Goal of this module is to provide the summary of energy consumption by
registered power sockets and all other house appliances.

Power distribution sources have to be associated using web application in order to
get proper calculations available. Can be edited via REST API or a web application
served through the central unit server.

Accessing data is possible via REST API, web app or directly from scripts using
energy_consumption object eg. energy_consumption:changed() . Energy
Consumption has global scope and is visible in all executions contexts.

Methods
• changed()

Checks if any data has changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of object has changed (thus is source of event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string) - name of property

Properties
Properties direct access is not allowed. You can get values using getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• available (boolean, read-only)

Describes if energy consumption data is available. Becomes available if grid, pv
or battery device association is configured (associated devices).

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

115 EnergyCenter - EnergyConsumption

• total.total_consumption (number, read-only)

Total summary of building energy consumption.

Unit: Wh

• total.house_consumption (number, read-only)

Total house energy consumption. Represents computed value of energy
consumption of devices that don't provide their individual energy consumption
data.

Unit: Wh

• total.electrical_outlets_consumption (number, read-only)

Total electrical outlets consumption. Represents computed value of energy
consumption of devices that provide their power consumption.

Unit: Wh

• today.total_consumption (number, read-only)

Today summary of building energy consumption.

Unit: Wh

• today.house_consumption (number, read-only)

Today house energy consumption. Represents computed value of energy
consumption of devices that don't provide their individual energy consumption
data.

Unit: Wh

• today.electrical_outlets_consumption (number, read-only)

Today electrical outlets consumption. Represents computed value of energy
consumption of devices that provide their power consumption.

Unit: Wh

116 EnergyCenter - EnergyProduction

EnergyCenter - EnergyProduction
The Goal of this module is to provide the details of energy produced by PV inverter.

Inverter has to be associated using web application in order to get proper
calculations available. Can be edited via REST API or a web application served
through the central unit server.

Accessing data is possible via REST API, web app or directly from scripts using
energy_production object eg. energy_production:changed() . Energy Production
has global scope and is visible in all executions contexts.

Methods
• changed()

Checks if any data has changed (thus is source of event).

Returns:
◦ (boolean)

• changedValue(property_name)

Checks if specific property of object has changed (thus is source of event).

Returns:
◦ (boolean)

Arguments:

◦ property_name (string) - name of property

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string) - name of property

Properties
Properties direct access is not allowed. You can get values using getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• available (boolean, read-only)

Describes if energy consumption data is available. Becomes available if
FlowMonitor PV Summary is available and inverter exposed total energy
produced parameter.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

117 EnergyCenter - EnergyProduction

• total.autoconsumption (number, read-only)

Total value of produced energy that was autoconsumed by building.

Unit: Wh

• total.energy_storage (number, read-only)

Total value of produced energy that was used to charge battery.

Unit: Wh

• total.grid_export (number, read-only)

Total value of produced energy that was exported to grid.

Unit: Wh

• today.autoconsumption (number, read-only)

Today value of produced energy that was autoconsumed by building.

Unit: Wh

• today.energy_storage (number, read-only)

Today value of produced energy that was used to charge battery.

Unit: Wh

• today.grid_export (number, read-only)

Today value of produced energy that was exported to grid.

118 WTP - AQSensor

WTP - AQSensor
Battery powered air quality sensor. Checks PM (particulate matter): 1.0, 2.5, 4.0,
10.0 concentration in the air.

Sensors measure values only every few minutes to save battery.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

119 WTP - AQSensor

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• pm1p0 (number, read-only)

Sensed concentration of PM1.0 value (particulate matter).

Unit: μg/m3.

• pm2p5 (number, read-only)

Sensed concentration of PM2.5 value (particulate matter).

Unit: μg/m3.

• pm4p0 (number, read-only)

Sensed concentration of PM4.0 value (particulate matter).

Unit: μg/m3.

• pm10p0 (number, read-only)

Sensed concentration of PM10.0 value (particulate matter).

120 WTP - AQSensor

Unit: μg/m3.

• air_quality (string, read-only)

Descriptive name for air quality. Based on PM10.0 concetration.

raw description

≤ 20 μg/m3 very_good

21 – 50 μg/m3 good

51 – 80 μg/m3 moderate

81 – 110 μg/m3 poor

111 – 150 μg/m3 unhealthy

> 150 μg/m3 very_unhealthy

121 WTP - BlindController

WTP - BlindController
Controller based on time configurations opens and closes a roller shade or tilt blind.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

122 WTP - BlindController

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• target_opening (number)

Desired setpoint opening, which device will try to achieve.

NOTE: If device doesnt contain percent_opening_control label, target opening
is limited to 0%, 50% or 100% (only these three).

Unit: %.

• current_opening (number, read-only)

Current opening value.

Unit: %.

• target_tilt (number, optional)

Desired tilt position.

NOTE: Parameter is optional. Available when: percent_tilt_control label is
provided.

Unit: %.

• current_tilt (number, optional, read-only)

Current tilt position

NOTE: Parameter is optional. Available when: percent_tilt_control label is
provided.

Unit: %.

123 WTP - BlindController

• window_covering_type (string)

Determines wheter tilt should be possible or not.

NOTE: Can be modified when: percent_tilt_control label is provided.

Available values to set: roller_shade, tilt_blind

• tilt_range (number, optional)

Determines tilt range.

NOTE: Parameter is optional. Available when: percent_tilt_control label is
provided. NOTE: Can be modified when: window_covering_type is equal to
tilt_blind .

Available values to set: 90, 180

Unit: angle (degrees).

• full_cycle_duration (number, optional)

Time required by motor to do full cycle from 100% to 0% or 0% to 100% (select
larger). Proper full open or full close action is based on this value.

NOTE: Parameter is optional. Available when: percent_opening_control label is
provided.

Unit: seconds.

• buttons_inverted (boolean, optional)

Replace up and down buttons directions.

NOTE: Parameter is optional. Available when: button_inversion_support label
is provided.

• outputs_inverted (boolean, optional)

Replace up and down outputs directions.

NOTE: Parameter is optional. Available when: output_inversion_support label
is provided.

• button_signal_type (string, optional)

Selected button specific behavior. eg. impulse = on/off impulse is required to
start action.

NOTE: Parameter is optional. Available when: percent_opening_control label is
provided.

Available values: impulse, state_change

• output_signal_type (string, optional)

Selected output specific behavior. eg. impulse = on/off impulse is required to
start motor.

NOTE: Parameter is optional. Available when: percent_opening_control label is
provided.

Available values to set: impulse, state_change

124 WTP - BlindController

• backlight_mode (string)

Buttons backlight mode. Available values: auto, fixed, off

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_brightness (number)

Buttons backlight brightness in percent.

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_idle_color (string)

HTML/Hex RGB representation of color when controller is in idle.

Example: #FF00FF

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_active_color (string)

HTML/Hex RGB representation of color when controller is active eg. motor is
working.

Example: #FFFF00

Note: Available when backlight is supported - check if has_backlight label is
provided.

Commands
• open

Opens a blind to specific value in percent passed in argument.

Argument:
opening percentage (number)

• up

Fully opens a blind.

• down

Fully closes a blind.

• stop

Immediately stops a blind motor.

• calibration

Starts blind calibration cycle.

• tilt

Calls tilt to the desired value.

Argument:
tilt percentage (number)

125 WTP - BlindController

Examples
Open blind at sunrise and close at sunset

if event.type == "sunrise" then
wtp[3]:call("up")

elseif event.type == "sunset" then
wtp[3]:call("down")

end

Set blind to half-open at noon

if dateTime:changed() then
if dateTime:getHours() == 12 and dateTime:getMinutes() == 0 then
wtp[3]:call("open", 50)

end
end

126 WTP - Button

WTP - Button
Battery powered button, customizable in application. Every button action can be
assigned different action. For example:

• Turn on first light when clicked once
• Turn on second light when clicked twice
• Turn off all lights when held down for 3 seconds
Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

127 WTP - Button

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• buttons_count (number, read-only)

Count of physical buttons.

• action (string, read-only)

Last action performed by user. Example: button_1_clicked_10_times ,
button_3_hold_started , button_2_held_3_seconds

• buzzer (string)

Embedded buzzer (speaker) settings. One of following: on, off, unsupported

128 WTP - Button

Examples
Turn on lights when button clicked once

local button = wtp[9]
local lights = {wtp[2], wtp[3], wtp[4]}

if button:changedValue("action") and button:getValue("action") ==
"button_1_clicked_1_times"

then
utils.table:forEach(lights, function (light) light:call("turn_on") end)

end

Close blinds when button held for 3 seconds

local button = wtp[9]
local blinds = {wtp[5], wtp[6], wtp[7]}

if button:changedValue("action") and button:getValue("action") ==
"button_1_held_3_seconds"

then
utils.table:forEach(blinds, function (blind) blind:call("down") end)

end

129 WTP - CO2Sensor

WTP - CO2Sensor
Battery powered CO2 sensor. Measures CO2 concentration in the air and sends
measurement to central unit. Sensors measure value only every few minutes to save
battery.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

130 WTP - CO2Sensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• co2 (number, read-only)

Sensed CO2 value.

Unit: PPM.

131 WTP - Dimmer

WTP - Dimmer
Device that controlls light intensity of output LED.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

132 WTP - Dimmer

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state (boolean)

State of the output. On/Off.

• target_level (number)

Desired light intensity level on which device is set or level on which device will be
set when turned on. (depending on state) Unit: %.

Commands
• turn_on

Turns on output.

• turn_off

Turns off output.

• toggle

Changes state to opposite.

• set_level

Set light intensity level to desired level smoothly during given time.

Argument:
packed arguments (table):

◦ light intensity in % (number)

133 WTP - Dimmer

• minumum: 0
• maximum: 100

◦ transition time in 0.1s (number)

• minimum: 1 (100 ms)
• maximum: 6000 (10 minutes)
• parameter is optional (500 ms default)

• stop

Calls Dimmer to stop current level moving action. Does nothing if no action is in
progress.

Examples
Turn on light at 19:00 and turn off at 21:00

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
wtp[4]:call("turn_on")

elseif dateTime:getHours() == 21 and dateTime:getMinutes() == 0 then
wtp[4]:call("turn_off")

end
end

Set the light intensity to 75% during 2 minutes

wtp[4]:call("set_level", {75, 1200})

Begin dimming on button hold start and finish immediately after release
(simple version)

Solution Drawback: will always take constant time to move from 0%->100%,
50%->100%, 10%->0% etc

local dimmerID = 4
local buttonID = 98

if wtp[buttonID]:changedValue("action") then

local action = wtp[buttonID]:getValue("action")
local fadeTime = 50 -- 5s / 5000ms

if action == "button_1_hold_started"
then
-- start moving to 100% from current target level
wtp[dimmerID]:call("set_level", {100, fadeTime})

elseif action == "button_2_hold_started"
then
-- start moving to 0% from current target level
wtp[dimmerID]:call("set_level", {0, fadeTime})

elseif action:find("button_1_held_") ~= nil or action:find("button_2_held_")
then
-- stop current moving action
wtp[dimmerID]:call("stop")

134 WTP - Dimmer

end

end

Begin dimming on button hold start and finish immediately after release
(advanced version)

Note: will adjust move time regarding current to target level difference

-- this function will compute required dimming time (adjusted to current level)
-- you shouldnt need to modify this function
local function computeMoveParameters(currentValue, desiredValue, fullFadeTime)

-- calculate diff between current and desired level
local diff = math.abs(desiredValue - currentValue)

-- calculate how long move will take for this diff
local reqTime = utils.math:scale(0, 100, 0, fullFadeTime, diff)

-- clamping / rounding
return {desiredValue, math.floor(utils.math:clamp(0, fullFadeTime, reqTime))}

end

-- the actual dimming action
local dimmer = wtp[4]
local button = wtp[9]

if button:changedValue("action") then

local action = button:getValue("action")
local fadeTime = 50 -- 5s / 5000ms

if action == "button_1_hold_started" then
-- start moving to 100% from current target
dimmer:call(

"set_level",
computeMoveParameters(wtp[dimmerID]:getValue("target_level"), 100,

fadeTime))
elseif action == "button_2_hold_started" then
-- start moving to 0% from current target level
dimmer:call(

"set_level",
computeMoveParameters(wtp[dimmerID]:getValue("target_level"), 0, fadeTime)

)
elseif action:find("button_1_held_") ~= nil or action:find("button_2_held_")

then
-- stop current moving action
dimmer:call("stop")

end

end

135 WTP - EnergyMeter

WTP - EnergyMeter
Energy meter is a device which can track and count consumed energy (total so far
and daily) and sense voltage/current and active power.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

136 WTP - EnergyMeter

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• current (number, read-only)

Recent AC current measument.

Unit: mA.

Note: Parameter is optional. Available when sensor is supported - check if
has_current_sensor label is provided.

• voltage (number, read-only)

Recent AC voltage measurement.

Unit: mV.

Note: Parameter is optional. Available when sensor is supported - check if
has_voltage_sensor label is provided.

• active_power (number, read-only)

Recent AC active power measurement.

Unit: mW.

• energy_consumed_today (number, read-only)

Sum of energy used today.

Unit: Wh.

• energy_consumed_yesterday (number, read-only)

Sum of energy used yesterday.

Unit: Wh.

137 WTP - EnergyMeter

• energy_consumed_total (number, read-only)

Total sum of energy used Unit: Wh.

Commands
• reset_energy_consumed

Calls Energy meter to reset energy consumed data.

• calibration

Calls Energy meter to calibrate sensor, adjusting measurements to expected
values. Calibration should be done using a resistive load (or as close as possible
to the perfect power factor (cos𝜑 = 1)) !
Arguments:
packed arguments (table):

◦ expected voltage in mV
◦ expected current in mA
◦ expected active power in mW

Examples
Send notification when active power usage rises above 2.5kW

-- 2.5 kW = 2500 W = 2500000 mW
local threshold = 2500000
if wtp[10]:changedValue("active_power")
then

if wtp[10]:getValue("active_power") > treshold
then
notify:error("Power usage too high!", "Check your device!")

end
end

138 WTP - FloodSensor

WTP - FloodSensor
Battery powered, flood sensor. Detects water leak on flat surfaces.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

139 WTP - FloodSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• flood_detected (boolean, read-only)

A flag representing the detection of flood / water leak by the sensor.

Examples
Catching alarms

if wtp[5]:changedValue("flood_detected") and wtp[5]:getValue("flood_detected")
then

print("Sensor detected water leak!!!")
notify:warning("Water leak!", "Water leak detected in toilet!", {1, 3})

end

140 WTP - FloodSensor

Close the valve and turn on siren on water leak

local valve, siren, floodSensor = wtp[1], wtp[2], wtp[3]

if floodSensor:changedValue("flood_detected") and
floodSensor:getValue("flood_detected")

then
valve:call("turn_off")
siren:call("turn_on")

end

141 WTP - HumiditySensor

WTP - HumiditySensor
Battery powered humidity sensor. Measures humidity and sends measurement to
central unit.

Sensors measure humidity only every few minutes to save battery. Can be assigned
to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

142 WTP - HumiditySensor

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• humidity (number, read-only)

Sensed humidity value.

Unit: rH% with one decimal number, multiplied by 10.

143 WTP - IAQSensor

WTP - IAQSensor
Battery powered Index of Air Quality sensor. Calculates Air Quality Index based on
various measures like CO2 or particles level and relative humidity.

Sensors measure values only every few minutes to save battery.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

144 WTP - IAQSensor

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (integer, read-only)

Unique network address.

• signal (integer, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (integer, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• iaq (integer, read-only)

Calculated Index of Air Quality.

• iaq_accuracy (string, read-only)

Index of Air Quality calculation accuracy. One of: unreliable , low , medium ,
high .

value meaning

unreliable The sensor is not yet stabilized or in a run-in status

low Calibration required and will be soon started

medium Calibration on-going

high Calibration is done, now IAQ estimate achieves best performance

145 WTP - IAQSensor

• air_quality (string, read-only)

Descriptive name for air quality.

raw description

≤ 20 very_good

21 – 50 good

51 – 100 moderate

101 – 150 poor

151 – 200 unhealthy

201 – 300 very_unhealthy

301 – 500 hazardous

> 500 extreme

146 WTP - LightSensor

WTP - LightSensor
Battery powered light sensor. Measures light illuminance in lux and sends
measurement to central unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

147 WTP - LightSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (integer, read-only)

Unique network address.

• signal (integer, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (integer, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• illuminance (integer, read-only)

Sensed light illuminance value.

Unit: lx.

148 WTP - MotionSensor

WTP - MotionSensor
Battery powered motion sensor. Based on custom configuration checks whether
motion was detected.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

149 WTP - MotionSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• enabled (boolean)

Enable or disable sensor. eg. If you want sense only at night time, you can setup
automation to enable/disable sensor.

• blind_duration (number)

Duration of sensor being off after detecting motion.

Unit: seconds.

• pulses_threshold (number)

Sensitivity factor. How many pulses from sensor are needed to treat action as
motion. The higher the value, the sensitivity decreases.

• pulses_window (number)

Sensitivity factor. Maximum time window in which pulses_threshold must occur
to treat action as motion. The higher the value, the sensitivity increases.

Unit: seconds.

150 WTP - MotionSensor

• motion_detected (boolean, read-only)

Holds latest motion detection state. Remains true on motion detection and false
when blind_duration time elapses.

This parameter doesn't emit event when switch from true to false happens. If you
need to observe such action, you need to use time_since_motion parameter.

• time_since_motion (number, read-only)

Time since last motion detected. Value of -1 means there wasn't any motion since
last system startup.

Unit: seconds.

Commands
• enable

Enables motion detector.

• disable

Disables motion detection.

• add_time_since_motion_event

Adds additional emitting time_since_motion event in seconds passed in
argument.

Arguments:
event reemission delay in seconds (number)

Examples
Catching motion events

if wtp[4]:changedValue("motion_detected") then
print("someone is moving aroung!")

end

if wtp[4]:changedValue("time_since_motion")
then
if wtp[4]:getValue("time_since_motion") == 0
then
print("someone is moving aroung!")

end
end

Delayed action

if dateTime:changed() then
-- add 30 second delay
wtp[4]:call("add_time_since_motion_event", 30)

end

151 WTP - MotionSensor

if wtp[4]:changedValue("time_since_motion")
then
if wtp[4]:getValue("time_since_motion") == 30
then
print("someone was here 30 seconds ago")

end
end

Enable motion detection at sunset and disable it at sunrise

if event.type == "sunrise" then
wtp[3]:call("disable")

elseif event.type == "sunset" then
wtp[3]:call("enable")

end

Enable a light for 5 minutes on motion detection

if wtp[4]:changedValue("motion_detected") then
wtp[60]:setValue("state", true)
wtp[60]:setValueAfter("state", false, 5 * 60)

end

Reconfigure thermostat when motion detected

if wtp[4]:changedValue("motion_detected") then
-- time limited to 2 hours, temperature 23.5°C
virtual[1]:call("enable_time_limited_mode", {120, 235})

end

152 WTP - OpeningSensor

WTP - OpeningSensor
Battery powered opening sensor. Checks whether window or door is open. Based on
that information system can do some action, for example, turn off heating in that
room. Can be assigned to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

153 WTP - OpeningSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• open (boolean, read-only)

Opening sensor state. Open/Closed.

• acknowledgment (string)

Newer sensors support communication protocol with acknowledgment. When
enabled, sensor will try deliver state change message three times or until ack is
received. May increase battery usage if communication is noisy, but data transfer
is more reliable.

Available values: on, off, unsupported

Examples
Catch open and close events

if wtp[4]:changedValue("open") then
if wtp[4]:getValue("open") then
print("The window is now open!")

else

154 WTP - OpeningSensor

print("The window is now closed!")
end

end

155 WTP - PressureSensor

WTP - PressureSensor
Battery powered pressure sensor. Measures pressure and sends measurement to
central unit.

Sensors measure pressure only every few minutes to save battery.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

156 WTP - PressureSensor

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (integer, read-only)

Unique network address.

• signal (integer, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (integer, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• pressure (integer, read-only)

Sensed pressure value.

Unit: hPa with one decimal number, multiplied by 10.

157 WTP - RadiatorActuator

WTP - RadiatorActuator
Battery powered radiator actuator. Controls valve opening e.g. based temperature
regulator or thermostat state.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

158 WTP - RadiatorActuator

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• opening (number)

Current valve opening level.

Unit: %.

• opening_minimum (number)

Lower valve opening level. Could not be greater than maximum. Setting
minimum value above current opening value, will also change current opening
value to minimum.

Unit: %.

• opening_maximum (number)

Upper valve opening level. Could not be less than minimum. Setting maximum
value below current opening value, will also change current opening value to
maximum.

Unit: %.

159 WTP - RadiatorActuator

Commands
• open

Opens radiator actuator to desired value in percent passed in argument.

Argument:
actuator opening in 1% (number)

• calibration

Calls Radiator Actuator to calibrate on next communication cycle.

NOTE: Cannot be executed when radiator actuator does not have
calibration_support label!

Examples
Regulate valve based on room temperature

sensor = wtp[1]
valve = wtp[2]

if sensor:changedValue("temperature") then
current_temperature = sensor:getValue("temperature")

if current_temperature > 220 then
valve:call("open", 0)

elseif current_temperature > 200 then
valve:call("open", 50)

else
valve:call("open", 100)

end
end

160 WTP - Relay

WTP - Relay
Execution module that changes state depending on the control signal. Relay can be
assigned to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

161 WTP - Relay

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state (boolean)

State of the output. On/Off.

• timeout (number)

Protection functionality, that will set device state to off if there are
communication problems.

Unit: minutes.

• timeout_enabled (boolean)

Parameter that indicates if timeout functionality is enabled.

• current (number, read-only)

Recent AC current measument in mA.

Note: Parameter is optional. Available when power meter is supported - check if
has_power_meter label is provided.

• voltage (number, read-only)

Recent AC voltage measurement in V.

Note: Parameter is optional. Available when power meter is supported - check if
has_power_meter label is provided.

• active_power (number, read-only)

Recent AC active power measurement in W.

162 WTP - Relay

Note: Parameter is optional. Available when power meter is supported - check if
has_power_meter label is provided.

• energy_consumption (double/real, read-only)

Sum of energy consumed by output in last 5 minutes.

Note: Parameter is optional. Available when power meter is supported - check if
has_power_meter label is provided.

• backlight_mode (string)

Buttons backlight mode. Available values: auto, fixed, off

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_brightness (number)

Buttons backlight brightness in percent.

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_idle_color (string)

HTML/Hex RGB representation of color when controller is in idle.

Example: #FF00FF

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_active_color (string)

HTML/Hex RGB representation of color when controller is active eg. motor is
working.

Example: #FFFF00

Note: Available when backlight is supported
◦ check if has_backlight label is provided.

• inverted (boolean)

Indicates if should invert physical state of relay compared to represented state in
application.

Commands
• turn_on

Turns on relay output.

• turn_off

Turns off relay output.

• toggle

Changes relay output to opposite.

163 WTP - Relay

Examples
Turn relay on between 19:00 and 21:00

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
wtp[4]:call("turn_on")

elseif dateTime:getHours() == 21 and dateTime:getMinutes() == 0 then
wtp[4]:call("turn_off")

end
end

Turn on the light for 5 minutes when motion detected

if wtp[4]:changedValue("motion_detected") then
wtp[60]:setValue("state", true)
wtp[60]:setValueAfter("state", false, 5 * 60)

end

164 WTP - RGB Controller

WTP - RGB Controller
Device that controlls color and light intensity of output LED.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to device with ID 6.

WTP devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

165 WTP - RGB Controller

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state (boolean)

State of the output. On/Off.

• brightness (number, read-only)

Desired light intensity level on which device is set or level on which device will be
set when turned on. (depending on state) Unit: %.

• led_color (string, read-only)

HTML/Hex RGB color that device will set on its output led strip.

• white_temperature (number, read-only)

White temperature that device will set on its output led strip.

Unit: Kelvins

• color_mode (string, read-only)

Color mode that device is set on. One of: rgb , temperature , animation .

• led_strip_type (string)

Led strip type that is connected with device. One of: rgb , rgbw , rgbww .

• white_temperature_correction (number)

White color temperature correction. Applies when led_strip_type set to rgbw.

• cool_white_temperature_correction (number)

Cool white color temperature correction. Applies when led_strip_type set to
rgbww.

166 WTP - RGB Controller

• warm_white_temperature_correction (number)

Warm white color temperature correction. Applies when led_strip_type set to
rgbww.

• active_animation (number, read-only)

Active animation id if animation was activated. Null value when no animation
active.

Commands
• turn_on

Turns on output.

• turn_off

Turns off output.

• toggle

Changes state to opposite.

• set_brightness

Sets light intensity level to desired level smoothly during given time.

Argument:
packed arguments (table):

◦ light intensity in % (number):

• minumum: 1
• maximum: 100

◦ transition time in 0.1s (number):

• minimum: 1 (100 ms)
• maximum: 6000 (10 minutes)
• parameter is optional (500 ms default)

• set_color

Sets device output to requested color in RGB mode during requested period of
time. Set color_mode to rgb .

Argument:
packed arguments (table):

◦ HTML/Hex RGB color representation (string)

• example: #88fb1c

◦ transition time in 0.1s (number)

• minimum: 1 (100 ms)
• maximum: 6000 (10 minutes)
• parameter is optional (500 ms default)

167 WTP - RGB Controller

• set_temperature

Sets device output to requested white temperature during requested period of
time. Set color_mode to temperature .

Argument:
packed arguments (table):

◦ color temperature in Kelvins (number)

• minumum: 1000
• maximum: 40000

◦ transition time in 0.1s (number)

• minimum: 1 (100 ms)
• maximum: 6000 (10 minutes)
• parameter is optional (500 ms default)

• activate_animation

Activate animation with specified id.

Argument:
packed arguments (table):

◦ id - ID of animation that will be activated (number)

• stop_animation

Stops active animation and call device to return to previous color_mode .

Examples
Turn on light to specific color at 19:00 and turn off at 21:00

local rgb = wtp[4]

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
rgb:call("set_color", {"#eedd11", 10})

elseif dateTime:getHours() == 21 and dateTime:getMinutes() == 0 then
rgb:call("turn_off")

end
end

Tune color temperature based on the time of day

local rgb = wtp[79]

if dateTime:changed() then
if dateTime:getHours() == 16 and dateTime:getMinutes() == 0 then
-- afternoon, neutral white at 75%
rgb:call("set_temperature", {5000})
rgb:call("set_brightness", {75})

elseif dateTime:getHours() == 18 and dateTime:getMinutes() == 30 then
-- evening, warm white at 45%
rgb:call("set_temperature", {3000, 600})

168 WTP - RGB Controller

rgb:call("set_brightness", {45, 600})
end

end

Activate an animation by id

local rgb = wtp[79]
local animation_id = 2

rgb:call("activate_animation", {id=animation_id})

Stop active animation

local rgb = wtp[79]
rgb:call("stop_animation")

Activate an animation by id when device state changes

local rgb = wtp[79]
local animation_id = 3

if wtp[3]:changedValue("state") then
rgb:call("activate_animation", {id=animation_id})

end

169 WTP - SmokeSensor

WTP - SmokeSensor
Battery powered, optical Smoke sensor. Detects smoke presence, high temperature
(eg. fire) and tamper.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

170 WTP - SmokeSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• locked (boolean)

Sensing/detection lock status. If true it means sensor won't report high
temperature and smoke detection alarms.

• dirt_level (number, read-only)

The current dirt (contamination) level of the optical sensor.

Unit: %.

• smoke_detected (boolean, read-only)

A flag representing the detection of smoke by the sensor.

• high_temperature_detected (boolean, read-only)

A flag representing the detection of high temperature (eg. fire) by the sensor.

• tamper_detected (boolean, read-only)

A flag representing the detection of tamper (eg. the sensor is not in the correct
position or someone is trying to take it off).

171 WTP - SmokeSensor

• uptime (number, read-only)

Time since sensor start.

Unit: seconds.

Commands
• lock

Locks the sensor. Smoke detection and high temperature alarms will not be
reported.

• unlock

Unlocks the sensor. Smoke detection and high temperature alarms will be
reported if detected.

• test

Starts device self-test.

• reset

Resets current device alarms.

Examples
Catching different alarms

if wtp[5]:changedValue("smoke_detected") and wtp[5]:getValue("smoke_detected")
then

print("Sensor detected smoke!!!")
end

if (wtp[5]:changedValue("high_temperature_detected")
and wtp[5]:getValue("high_temperature_detected"))

then
print("Sensor detected high temperature!!!")

end

if wtp[5]:changedValue("tamper_detected") and wtp[5]:getValue("tamper_detected")
then

print("Someone is trying to steal your sensor!")
end

Locking and unlocking

-- lock using parameter
wtp[5]:setValue("locked", true)

--unlock using parameter
wtp[5]:setValue("locked", false)

--lock using command
wtp[5]:call("lock")

--unlock using command
wtp[5]:call("unlock")

172 WTP - SmokeSensor

Reacting to smoke

local fan, siren, smokeSensor = wtp[2], wtp[4], wtp[8]

if smokeSensor:changedValue("smoke_detected") and
smokeSensor:getValue("smoke_detected")

then
fan:call("turn_on")
siren:call("turn_on")

end

173 WTP - TemperatureRegulator

WTP - TemperatureRegulator
Temperature regulator notifies when desired temperature is reached in room. Can
by battery or AC 230V powered. Can be assigned to virtual thermostat in web
application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Normally works in constant temperature mode only, but additional modes
(time_limited and schedule) can be unlocked when associated with Virtual
Thermostat.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

174 WTP - TemperatureRegulator

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_mode.current (string, read-only)

Regulator target temperature mode. Specifies if regulator works in constant

mode with one target temperature, time_limited mode with one temporary
target temperature or according to schedule in schedule mode with many target
temperatures in time, configured by user.

Parameter is read only, use commands to change target temperature mode!
Parameter cannot be schedule if thermostat doesnt have has_schedule label!

175 WTP - TemperatureRegulator

When not associated with Virtual Thermostat it will always work in constant
mode.

Available values: constant, schedule, time_limited. Default: constant

• target_temperature_mode.remaining_time (number, read-only)

Remaining time until time_limited mode ends. Cannot be modified directly - use
commands.

Unit: minutes.

• target_temperature_miniumum (number)

Lower limit of the target temperature. Could not be greater than maximum.
Setting minimum value above target value, will also change target value to
minimum.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_maximum (number)

Upper limit of the target temperature. Could not be less than minimum. Setting
maximum below target, will also change target value to minimum. Unit: °C with
one decimal number, multiplied by 10.

• target_temperature_reached (boolean)

Controls device‘s algorithm state indicator (available on some regulators). eg
LED Diode. May be controlled by external algorithms or devices such as
Thermostat (when thermostat is active, indicator will blink)

• system_mode (string)

Indicates external system work mode. Used to display proper icon on the
regulator.

Available only if device has label has_system_mode.

May only be changed if device is not assigned to thermostat (has not label
managed_by_thermostat).

Available values: off, heating, cooling. Default: heating

• keylock (string)

Device keylock state. Available values: on, off, unsupported

• confirm_time_mode (boolean, read-only)

Mainly for Mobile/Web App purposes. Indicates if time mode modal should be
displayed when changing thermostat temperature. Controlled by Virtual
Thermostat.

Commands
• set_target_temperature

Calls Temperature Regulator to change constant or time_limited mode target
temperature to the desired value.

176 WTP - TemperatureRegulator

If regulator works in time_limited mode it will change target temperature only,
not affecting remaining_time .

If regulator works in schedule mode it will change target temperature mode to
constant .

Argument:
target temperature in 0.1°C (number)

• enable_constant_mode

Calls Temperature Regulator to change target temperature mode to constant .
When regulator is already in constant mode, it will change mode
target_temperature only.

NOTE: Cannot be executed when regulator is not associated with Thermostat.
Argument:
target temperature in 0.1°C (number)

• enable_time_limited_mode

Calls Temperature Regulator to change mode and target temperature mode to
time_limited for desired time.

When regulator is already in time_limited mode, it will change remaining_time

or/and target_temperature depending on payload.

NOTE: Cannot be executed when regulator is not associated with Thermostat.
Argument:
packed arguments (table):

◦ remaining time in minutes (number)
◦ target temperature in 0.1°C (number)

• disable_time_limited_mode

Calls Temperature Regulator to disable time_limited and go back to previous
target temperature mode. When regulator is not in time_limited mode, it will do
nothing.

NOTE: Cannot be executed when regulator is not associated with Thermostat.

Examples
Raise target temperature between 15:00 and 20:00

if dateTime:changed() then
if dateTime:getHours() == 15 and dateTime:getMinutes() == 0 then
wtp[5]:call("set_target_temperature", 220)

elseif dateTime:getHours() == 20 and dateTime:getMinutes() == 0 then
wtp[5]:call("set_target_temperature", 190)

end
end

177 WTP - TemperatureSensor

WTP - TemperatureSensor
Battery powered temperature sensor. Measures temperature and sends
measurement to central unit. Temperature sensors measure temperature only every
few minutes to save battery. Can be assigned to virtual thermostat in web
application as room or floor sensor.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

178 WTP - TemperatureSensor

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (integer, read-only)

Unique network address.

• signal (integer, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• battery (integer, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• temperature (integer, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

• calibration (integer)

Static point temperature calibration, used to adjust measurments.

Unit: °C with one decimal number, multiplied by 10.

179 WTP - Throttle

WTP - Throttle
Standalone radio controlled throttle.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

180 WTP - Throttle

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• opening (number)

Current opening level.

Unit: %.

• impulses (number, read-only)

Current fan speed-o-meter impulses reading.

Unit: %.

• flow (double/real, read-only)

Calculated throttle flow based on opening and impulses.

Flow is calculated using formula in the formula parameter.

• formula (string)

Formula used to calculate flow. Refering to object you can get data you need to
calculate, for example get opening from object: object.opening . Should contain
only calculations returning number. Should not contain any condition statements,
loops and more complicated code.

Example:

object.opening * 2 + math.sqrt(object.impulses)

Default:

181 WTP - Throttle

8 + (object.impulses * ((1.32 - object.opening / 100)^2 * -0.35 + 1.9)) *
0.055

Commands
• calibration

Requests immediate calibration.

• factory_reset

Requests device factory reset.

Examples
Synchronize throttle with radiator actuator

actuator = wtp[1]
throttle = wtp[2]

if actuator:changedValue("opening") then
throttle:setValue("opening", actuator:getValue("opening"))

end

182 WTP - TwoStateInputSensor

WTP - TwoStateInputSensor
Boolean input sensor checks input state and send it to central unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to device with ID 6.

WTP devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

183 WTP - TwoStateInputSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (integer, read-only)

Unique network address.

• signal (integer, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state (boolean, read-only)

State of the input.

• inverted (boolean)

Indicates if physical state of input compared to represented state in application
should be inverted.

184 WTP - FanControl

WTP - FanControl
Fan Control is a device which is used to control ventilation fan.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using wtp container eg. wtp[6] gives you access to wireless device with ID 6. WTP
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

185 WTP - FanControl

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state.current (string, read-only)

Current state the fan is working in. Available states are: off, automatic, holiday,
hurricane, party, hearth, flaccid.

• state.previous (string, read-only)

Previous state the fan was working in. Available states are: off, automatic,
holiday, hurricane, party, hearth, flaccid.

• state.remaining_time (integer, read-only)

Remaining time of the temporal state. When passes current state is set to
previous state. Temporal states are: hurricane, party, hearth, flaccid.

• state_configuration.auto.co2_thresholds (table of size 3)

Three steps of CO2 thresholds specifying wroking in automatic state.

• state_configuration.holiday.air_out_interval (number)

Interval for airing in holiday state. Unit: days

• state_configuration.hurricane.default_duration (number)

Default duration of hurricane state. Unit: seconds

• state_configuration.party.default_duration (number)

Default duration of party state. Unit: seconds

186 WTP - FanControl

• state_configuration.hearth.default_duration (number)

Default duration of hearth state. Unit: seconds

• state_configuration.flaccid.default_duration (number)

Default duration of flaccid state. Unit: seconds

• computed_flow (number)

Value of computed flow passed from other devices.

Commands
• set_state

Calls Fan Control to change its current state.

Arguments:
packed arguments (table):

◦ state to set (string)
◦ duration the state should be active in seconds (number) Note: This parameter
is forbidded for permanent states and is optional for temporal states. If it is not
passed default duration is used.

187 TECH - CommonHeatBuffer

TECH - CommonHeatBuffer
Device plugged into RS input in central unit. Heat buffer representation. Allows
user to read and modify buffer parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

188 TECH - CommonHeatBuffer

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired target (setpoint) temperature, which device will try to achieve.

Unit: °C

NOTE: Can be changed only if device is in fixed target temperature mode.

• target_temperature_mode (string)

Defines whether target temperature is fixed or dynamic eg. computed by heat
curve.

NOTE: Can be changed only if device has associated temperature curve.
Available values: fixed, heat_curve. Default: fixed

• temperature_down (number, read-only)

Sensed temperature in lower part of buffer.

Unit: °C with one decimal number, multiplied by 10.

Note: Parameter is optional. Available when: check if
temperature_down_available label is provided.

• temperature_up (number, read-only)

Sensed temperature in upper part of buffer.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_reached (boolean, read-only)

Indicates if target temperature is reached.

• name_text (number, read-only)

Buffer name ID. ID text from TECH translations.

189 TECH - CH PumpAdditional

TECH - CH PumpAdditional
Device plugged into RS input in central unit. Additional CH Pump representation.
Allows user to read and modify CH Pump parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

190 TECH - CH PumpAdditional

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• pump_work (boolean, read-only)

Current pump working state on/off.

• algorithm_type (number, read-only)

Device name ID. ID text from TECH translations.

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• temperature_central_heating (number, read-only)

Current central heating temperature.

Unit: °C with one decimal number, multiplied by 10.

• temperature_hysteresis (number, read-only)

Current hysteresis temperature.

Unit: °C with one decimal number, multiplied by 10.

• temperature_threshold (number, read-only)

Current threshold temperature.

Unit: °C with one decimal number, multiplied by 10.

191 TECH - CommonDHW

TECH - CommonDHW
Device plugged into RS input in central unit. Common DHW representation. Allows
user to read and modify DHW parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

192 TECH - CommonDHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired target (setpoint) temperature, which device will try to achieve. Unit: °C

NOTE: Can be changed only if device is in fixed target temperature mode.

• target_temperature_mode (string)

Defines whether target temperature is fixed or dynamic eg. computed by heat
curve.

NOTE: Can be changed only if device has associated temperature curve.
Available values: fixed, heat_curve. Default: fixed

• target_temperature_minimum (number, read-only)

Lower limit of the target temperature. Could not be greater than maximum. Unit:
°C

• target_temperature_maximum (number, read-only)

Upper limit of the target temperature. Could not be less than minimum.

Unit: °C

• correction (number, read-only)

Target temperature correction.

Unit: °C

• temperature_central_heating (number, read-only)

Current central heating temperature.

Unit: °C with one decimal number, multiplied by 10.

• temperature_domestic_hot_water (number, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

193 TECH - CommonDHW

• pump_work (boolean, read-only)

Current pump working state on/off.

Examples
Set target temperature to 45 in summer mode and 55 in other modes

pellet_ch_main = tech[7]
dhw = tech[8]

if dateTime:changed() then
if pellet_ch_main:getValue("operations_mode") == "summer_mode" then
dhw:setValue("target_temperature", 45)

else
dhw:setValue("target_temperature", 55)

end
end

194 TECH - DHW PumpAdditional

TECH - DHW PumpAdditional
Device plugged into RS input in central unit. Additional DHW Pump representation.
Allows user to read and modify DHW Pump parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

195 TECH - DHW PumpAdditional

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• pump_work (boolean, read-only)

Current pump working state on/off.

• algorithm_type (number, read-only)

Device name ID. ID text from TECH translations.

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C

• temperature_domestic_hot_water (number, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_maximum (number, read-only)

Upper limit of the target temperature. Setting maximum below target, will also
change target value to maximum.

Unit: °C

• temperature_threshold (number, read-only)

Current threshold temperature.

Unit: °C with one decimal number, multiplied by 10.

196 TECH - FloorPumpAdditional

TECH - FloorPumpAdditional
Device plugged into RS input in central unit. Additional Floor Pump representation.
Allows user to read pump parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

197 TECH - FloorPumpAdditional

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• pump_work (boolean, read-only)

Current pump working state on/off.

• algorithm_type (number, read-only)

Device name ID. ID text from TECH translations.

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• temperature_floor (number, read-only)

Current floor temperature.

Unit: °C with one decimal number, multiplied by 10.

• minimum_temperature (number, read-only)

Lower limit of the floor temperature. .

Unit: °C

• maximum_temperature (number, read-only)

Upper limit of the floor temperature.

Unit: °C

198 TECH - HeatPump

TECH - HeatPump
Device plugged into RS input in central unit. Heat pump representation. Allows user
to read and modify heat pump parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

199 TECH - HeatPump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• tags (table, read-only)

Collection of tags assigned to device.

• blockade (boolean)

Valve work blockade. If set to true valve will stop working.

• work_mode (number)

The heat pump current operating mode (text id)

• work_mode_list (number, read-only)

Available work mode list (text id)

• fan (number, read-only)

Current fan state (0 - 100%)

• compressor_state (boolean, read-only

Current compressor state

• cop (number, read-only)

Coefficient of performance

• cop_text (number, read-only)

Text id for cop (cooling/heating)

• temperature_outdoor (number, read-only)

Current outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• actual_power (number, read-only)

Current heating power Unit: WAT

200 TECH - HeatPump

• actual_power_text (number, read-only)

Text id for cop (cooling/heating)

• upper_source_in_temp (number, read-only)

Current upper source temperatrure.

Unit: °C with one decimal number, multiplied by 10.

• electrical_power (number, read-only)

Current consumed electrical power Unit: WAT

• valve_buffer_state_text (number, read-only)

Current valve-buffer state text id

• ehome_work_mode (string)

Current heat pump work mode (auto,heating,cooling)

• compressor_oil_temperature (number, read-only)

Current compressor oil temperature.

Unit: °C with one decimal number, multiplied by 10.

• current_flow (number, read-only)

Current flow Unit: l/h (-1 error)

• current_power_consumption (number, read-only)

Current power consumption Unit: WAT

• evd_valve_opening (number, read-only)

Current evd valve opening Unit: percent with one decimal number, multiplied by
10.

• upper_source_pump_state (number, read-only)

Current upper source pump state Unit: percent with one decimal number,
multiplied by 10.

• evd_condensing_pressure (number, read-only)

Current evd condensing pressure Unit: paskal.

• compressor_last_work_time (number, read-only)

Current compressor last work time Unit: second.

Commands
• set_ehome_work_mode

Calls HeatPump to change ehome work mode (device climate mode)

Argument:
ehome work mode (climate mode), one of: (auto,heating,cooling) (string)

201 TECH - HeatPump

• set_work_mode

Calls HeatPump to change work mode

Argument:

work mode id, one of available in property work_mode_list (number)

202 TECH - HumiditySensor

TECH - HumiditySensor
Device plugged into RS input in central unit. Humidity sensor. Measures humidity
and sends measurement to central unit. Can be assigned to virtual thermostat in
web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

203 TECH - HumiditySensor

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• humidity (number, read-only)

Sensed humidity value.

Unit: rH% with one decimal number, multiplied by 10.

204 TECH - PelletBoiler

TECH - PelletBoiler
Device plugged into RS input in central unit. Pellet boiler representation. Allows
user to read and modify boiler parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

205 TECH - PelletBoiler

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• feeder (boolean, read-only)

Feeder working state. On/Off.

• stocker (boolean, read-only)

Secondary feeder working state. On/Off.

• fan (number, read-only)

Current fan speed (0-100).

Unit: %

• grid (boolean, read-only)

Current grid working state. On/Off.

• heater (boolean, read-only)

Current heater working state. On/Off.

• state (boolean, read-only)

Current pellet boiler working state. On/Off.

• state_text (number, read-only)

Pellet boiler working state ID name. ID text from TECH translations.

• temperature_central_heating (number, read-only)

Current central heating temperature.

Unit: °C with one decimal number, multiplied by 10.

206 TECH - PelletBoiler

• temperature_exhaust (number, read-only)

Current exhaust temperature.

Unit: °C with one decimal number, multiplied by 10.

• temperature_return (number, read-only)

Current return temperature.

Unit: °C with one decimal number, multiplied by 10.

• temperature_feeder (number, read-only)

Current feeder temperature.

Unit: °C with one decimal number, multiplied by 10.

• fire (boolean, read-only)

Current fire state.

• target_temperature (number)

Desired target (setpoint) temperature, which device will try to achieve. Unit: °C

NOTE: Can be changed only if device is in fixed target temperature mode.

• target_temperature_mode (string)

Defines whether target temperature is fixed or dynamic eg. computed by heat
curve.

NOTE: Can be changed only if device has associated temperature curve.
Available values: fixed, heat_curve. Default: fixed

• target_temperature_miniumum (number, read-only)

Lower limit of the target temperature.

Unit: °C

• target_temperature_maximum (number, read-only)

Upper limit of the target temperature.

Unit: °C

• correction (number, read-only)

Target temperature correction resulting from some algorithms in pellet controller.

Unit: °C

• blockade (boolean)

Pellet boiler work blockade. If set to true pellet will stop working.

• tray_calibrate (boolean, read-only)

Parameter which indicates if tray is calibrated.

• tray_percent (number, read-only)

Percentage of tray filling. Will show proper value only if tray is calibrated.

207 TECH - PelletBoiler

• cause_of_damping (table of numbers, read-only)

Array of text IDs which show a cause of damping. ID text from TECH translations.

Examples
Stop pellet boiler when all thermostats reach their target temperatures

thermostats = {virt[3], virt[4], virt[5], virt[6]}
pellet = tech[2]

if dateTime:changed()
then

local temperature_reached = utils.table:every(thermostats, function (th)
return not th:getValue('state')

end)

pellet:setValue("blockade", temperature_reached)
end

208 TECH - PelletCHMain

TECH - PelletCHMain
Device plugged into RS input in central unit. Pellet CH representation. Allows user
to read and modify CH parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

209 TECH - PelletCHMain

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• pump_work (boolean, read-only)

Current pump working state on/off.

• operations_mode (string)

Current pump mode. One of following: house_heating , boiler_priority ,
parallel_pumps , summer_mode

Examples
Change modes based on current season

if dateTime:changed()
then

if dateTime:getHours() == 0 and dateTime:getMinutes() == 0
then
if dateTime:getMonth() >= 4 and dateTime:getMonth() <= 9
then

-- april – september, change to summer mode
tech[7]:setValue("operations_mode", "summer_mode")

else
-- rest of the year, change to boiler priority mode
tech[7]:setValue("operations_mode", "boiler_priority")

end
end

end

210 TECH - ProtectPumpAdditional

TECH - ProtectPumpAdditional
Device plugged into RS input in central unit. Additional Protect Pump
representation. Allows user to read additional pump parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

211 TECH - ProtectPumpAdditional

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• pump_work (boolean, read-only)

Current pump working state on/off.

• algorithm_type (number, read-only)

Device name ID. ID text from TECH translations.

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• temperature_central_heating (number, read-only)

Current central heating temperature.

Unit: °C with one decimal number, multiplied by 10.

• temperature_return (number, read-only)

Current return temperature.

Unit: °C with one decimal number, multiplied by 10.

212 TECH - RelayAdditional

TECH - RelayAdditional
Device plugged into RS input in central unit. Additional Relay representation.
Allows user to read additional relay parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

213 TECH - RelayAdditional

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• pump_work (boolean, read-only)

Current relay state on/off.

• algorithm_type (number, read-only)

Device name ID. ID text from TECH translations.

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

214 TECH - Relay

TECH - Relay
Device plugged into RS input in central unit. Execution module that changes state
depending on the control signal. Relay can be assigned to virtual thermostat in web
application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

215 TECH - Relay

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (boolean)

State of the output. On/Off.

• timeout (number)

Protection functionality, that will set device state to off if there are
communication problems.

Unit: minutes.

• timeout_enabled (boolean)

Parameter that indicates if timeout functionality is enabled.

• inverted (boolean)

Indicates if should invert physical state of relay compared to represented state in
application.

Commands
• turn_on

Turns on relay output.

• turn_off

Turns off relay output.

• toggle

Changes relay output to opposite.

216 TECH - Relay

Examples
Turn on relay between 19:00 and 21:00

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
tech[4]:call("turn_on")

elseif dateTime:getHours() == 21 and dateTime:getMinutes() == 0 then
tech[4]:call("turn_off")

end
end

217 TECH - TemperatureRegulator

TECH - TemperatureRegulator
Device plugged into RS input in central unit. Temperature regulator notifies when
desired temperature is reached in room. Can be assigned to virtual thermostat in
web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Normally works in constant temperature mode only, but additional modes
(time_limited and schedule) can be unlocked when associated with Virtual
Thermostat.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

218 TECH - TemperatureRegulator

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_mode.current (string, read-only)

Regulator target temperature mode. Specifies if regulator works in constant

mode with one target temperature, time_limited mode with one temporary
target temperature or according to schedule in schedule mode with many target
temperatures in time, configured by user.

Parameter is read only, use commands to change target temperature mode!
Parameter cannot be schedule if thermostat doesnt have has_schedule label!
When not associated with Virtual Thermostat it will always work in constant
mode.

Available values: constant, schedule, time_limited. Default: constant

• target_temperature_mode.remaining_time (number, read-only)

Remaining time until time_limited mode ends. Cannot be modified directly - use
commands.

Unit: minutes.

219 TECH - TemperatureRegulator

• target_temperature_miniumum (number)

Lower limit of the target temperature. Could not be greater than maximum.
Setting minimum value above target value, will also change target value to
minimum.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_maximum (number)

Upper limit of the target temperature. Could not be less than minimum. Setting
maximum below target, will also change target value to minimum. Unit: °C with
one decimal number, multiplied by 10.

• target_temperature_reached (boolean)

Controls device‘s algorithm state indicator (available on some regulators). eg
LED Diode. May be controlled by external algorithms or devices such as
Thermostat (when thermostat is active, indicator will blink)

• confirm_time_mode (boolean, read-only)

Mainly for Mobile/Web App purposes. Indicates if time mode modal should be
displayed when changing thermostat temperature. Controlled by Virtual
Thermostat.

Commands
• set_target_temperature

Calls Temperature Regulator to change constant or time_limited mode target
temperature to the desired value.

If regulator works in time_limited mode it will change target temperature only,
not affecting remaining_time .

If regulator works in schedule mode it will change target temperature mode to
constant .

Argument: target temperature in 0.1°C (number)

• enable_constant_mode

Calls Temperature Regulator to change target temperature mode to constant .
When regulator is already in constant mode, it will change mode
target_temperature only.

NOTE: Cannot be executed when regulator is not associated with Thermostat.
Argument: target temperature in 0.1°C (number)

• enable_time_limited_mode

Calls Temperature Regulator to change mode and target temperature mode to
time_limited for desired time.

When regulator is already in time_limited mode, it will change remaining_time

or/and target_temperature depending on payload.

220 TECH - TemperatureRegulator

First parameter is remaining_time , second is target_temperature .

NOTE: Cannot be executed when regulator is not associated with Thermostat.
Argument:
packed arguments (table):

◦ remaining time in minutes (number)
◦ target temperature in 0.1°C (number)

• disable_time_limited_mode

Calls Temperature Regulator to disable time_limited and go back to previous
target temperature mode. When regulator is not in time_limited mode, it will do
nothing.

NOTE: Cannot be executed when regulator is not associated with Thermostat.

Examples
Raise target temperature between 15:00 and 20:00

if dateTime:changed() then
if dateTime:getHours() == 15 and dateTime:getMinutes() == 0 then
tech[5]:call("set_target_temperature", 220)

elseif dateTime:getHours() == 20 and dateTime:getMinutes() == 0 then
tech[5]:call("set_target_temperature", 190)

end
end

221 TECH - TemperatureSensor

TECH - TemperatureSensor
Device plugged into RS input in central unit. Temperature sensor. Measures
temperature and sends measurement to central unit. Can be assigned to virtual
thermostat in web application as room or floor sensor.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

222 TECH - TemperatureSensor

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• temperature (number, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

• calibration (number)

Static point temperature calibration, used to adjust measurments.

Unit: °C with one decimal number, multiplied by 10.

223 TECH - TwoStateInputSensor

TECH - TwoStateInputSensor
Device plugged into RS input in central unit. Boolean input sensor checks input
state and send it to central unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

224 TECH - TwoStateInputSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (boolean, read-only)

State of the input. On/Off.

• inverted (boolean)

Indicates if physical state of input compared to represented state in application
should be inverted.

225 TECH - Valve

TECH - Valve
Device plugged into RS input in central unit. Valve representation. Allows user to
read and modify valve parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.
Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6. TECH
devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

226 TECH - Valve

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired target (setpoint) temperature, which device will try to achieve. Unit: °C

NOTE: Can be changed only if device is in fixed target temperature mode.

• target_temperature_mode (string)

Defines whether target temperature is fixed or dynamic eg. computed by heat
curve.

NOTE: Can be changed only if device has associated temperature curve.
Available values: fixed, heat_curve. Default: fixed

• target_temperature_miniumum (number, read-only)

Lower limit of the target temperature. Unit: °C

• target_temperature_maximum (number, read-only)

Upper limit of the target temperature. Unit: °C

• correction (number, read-only)

Target temperature correction resulting from some algorithms in valve controller.
Unit: °C

• temperature_valve (number, read-only)

Current valve temperature. Unit: °C with one decimal number, multiplied by 10.

• open_percent (number, read-only)

Current open percentage. Unit: %

227 TECH - Valve

• state (number, read-only)

Valve working state. With following meanings. 1 - Off 2 - Calibration 4 - Return
protection 5 - Boiler protection 6 - Working 7 - Blockade 8 - Alarm 9

◦ Manual work
• state_text (number, read-only)

Valve working state ID name. ID text from TECH translations.

• temperature_return (number, read-only)

Current return temperature. Unit: °C with one decimal number, multiplied by 10.

• temperature_central_heating (number, read-only)

Current central heating temperature. Unit: °C with one decimal number,
multiplied by 10.

• room_regulator (boolean, read-only)

Current room regulator state (target temperature reached).

• pump_work (boolean, read-only)

Current pump working state. On/Off.

• blockade (boolean)

Valve work blockade. If set to true valve will stop working.

• weather_control (boolean, read-only)

Parameter which indicates if weather control is enabled.

• temperature_outdoor (number, read-only)

Current outdoor temperature. Unit: °C with one decimal number, multiplied by
10.

• work_mode (string)

Current valve work mode (heating,cooling)

Examples
Close valve if thermostat reached target temperature

if dateTime:changed() then
thermostat = virt[3]
valve = tech[3]

temperature_reached = not thermostat:getValue("state")
valve:setValue("blockade", temperature_reached)

end

228 TECH - Ventilation

TECH - Ventilation
Device plugged into RS input in central unit. Valve representation. Allows user to
read and modify valve parameters.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using tech container eg. tech[6] gives you access to device with ID 6.

TECH devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

229 TECH - Ventilation

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• sub_id (number, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• tags (table, read-only)

Collection of tags assigned to device.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C

• target_temperature_miniumum (number, read-only)

Lower limit of the target temperature.

Unit: °C

• target_temperature_maximum (number, read-only)

Upper limit of the target temperature.

Unit: °C

• cooling (boolean, read-only)

Current cooling state,

• pre_heating (boolean, read-only)

Current pre_heating state,

• post_heating (boolean, read-only)

Current post_heating state,

• gwc (boolean, read-only)

Current gwc state,

230 TECH - Ventilation

• humidifier (boolean, read-only)

Current humidifier state,

• bypass (boolean, read-only)

Current bypass state,

• intake_temperature (number, read-only)

current temperature entering the house Unit: °C with one decimal number,
multiplied by 10.

• exhaust_temperature (number, read-only)

current exhaust temperature Unit: °C with one decimal number, multiplied by 10.

• extract_temperature (number, read-only)

current extract temperature Unit: °C with one decimal number, multiplied by 10.

• supply_temperature (number, read-only)

current supply temperature Unit: °C with one decimal number, multiplied by 10.

• additional_temperature_supply (number, read-only)

current additional_temperature_supply Unit: °C with one decimal number,
multiplied by 10.

Note: Parameter is optional. Available when: check if
additional_temperature_supply_available label is provided.

• additional_temperature_outside (number, read-only)

current additional_temperature_outside Unit: °C with one decimal number,
multiplied by 10.

Note: Parameter is optional. Available when: check if
additional_temperature_outside_available label is provided.

• additional_temperature_outside (number, read-only)

current additional_temperature_outside Unit: °C with one decimal number,
multiplied by 10.

• humidity (number, read-only)

current humidity Unit: %

• co2ppm (number, read-only)

current co2 level Unit: ppm

• supply_fan_gear (number, read-only)

current supply fan gear Example: 0-4

• extract_fan_gear (number, read-only)

current extract fan gear Example: 0-4

• supply_fan_flow (number, read-only)

current supply fan flow Unit: m3/h

231 TECH - Ventilation

• extract_fan_flow (number, read-only)

current extract fan flow Unit: m3/h

• is_flow (boolean, read-only)

Ventilation flow mode. If set to true ventilation working with flow settings

• target_flow_supply (number)

Desired setpoint flow supply, which device will try to achieve.

Unit: m3/h

• target_flow_extract (number)

Desired setpoint flow extract, which device will try to achieve.

Unit: m3/h

• min_flow (number, read-only)

Lower limit of the target target_flow.

Unit: m3/h

• max_flow (number, read-only)

Upper limit of the target target_flow.

Unit: m3/h

• work_mode (number)

Ventilation work mode. If set to true ventilation working with sinum parameters
else working standalone

• state (number, read-only)

Ventilation working state. With following meanings.

• state_text (number, read-only)

Ventilation working state ID name. ID text from TECH translations.

• target_gear_supply (number)

Desired setpoint gear supply, which device will try to achieve.

Unit: %

• target_gear_extract (number)

Desired setpoint gear extract, which device will try to achieve.

Unit: %

• bypass_work_mode (number)

The bypass current operating mode (text id)

Note: Parameter is optional. Available when: check if bypass_available label is
provided.

• bypass_work_mode_list (number, read-only)

Available bypass work mode list (text id)

232 TECH - Ventilation

Commands
• cooling_on_request

Calls Ventilation to send cooling on request.

• heating_on_request

Calls Ventilation to send heating on request.

• humidifier_on_request

Calls Ventilation to send humidifier on request.

• cooling_off_request

Calls Ventilation to send cooling off request.

• heating_off_request

Calls Ventilation to send heating off request.

• humidifier_off_request

Calls Ventilation to send humidifier off request.

• set_work_mode

Calls Ventilation to change work mode

Argument:
work mode, one of (auto, sinum) (string)

• set_target_temperature

Calls device to change target temperature.

Argument:
target temperature in °C without decimals (number)

• set_bypass_work_mode

Calls device to change bypass work mode

Argument:

bypass work mode text id, one of available in property bypass_work_mode_list
(number)

233 Modbus - Alpha-Innotec - Heat Pump

Modbus - Alpha-Innotec - Heat Pump
Representation of Heat Pump related parameters of Alpha-Innotec device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

234 Modbus - Alpha-Innotec - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• temperature_indoor (number, read-only)

Indoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_indoor (number, read-only)

Set indoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• fixed_heating_target_temperature (number)

Set temperature for heating in fixed temperature mode.

Unit: °C with one decimal number, multiplied by 10.

• temperature_outdoor (number, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_supply (number, read-only)

Heating supply temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_return (number, read-only)

Heating return temperature.

Unit: °C with one decimal number, multiplied by 10.

• hot_gas_temperature (number, read-only)

Hot gas temperature.

Unit: °C with one decimal number, multiplied by 10.

• condensation_temperature (number, read-only)

Condensation temperature.

Unit: °C with one decimal number, multiplied by 10.

235 Modbus - Alpha-Innotec - Heat Pump

• evaporation_temperature (number, read-only)

Evaporation temperature.

Unit: °C with one decimal number, multiplied by 10.

• overheating (number, read-only)

Overheating.

Unit: K with one decimal number, multiplied by 10.

• lower_source_out_temperature (number, read-only)

Lower source out temperature.

Unit: °C with one decimal number, multiplied by 10.

• lower_source_in_temperature (number, read-only)

Lower source in temperature.

Unit: °C with one decimal number, multiplied by 10.

• heat_quantity_hot_water (number, read-only)

Heat quantity domestic hot water.

Unit: kW/h with one decimal number, multiplied by 10.

• heat_quantity_heating (number, read-only)

Heat quantity heating.

Unit: kW/h with one decimal number, multiplied by 10.

• heat_quantity_total (number, read-only)

Heat quantity total.

Unit: kW/h with one decimal number, multiplied by 10.

• electric_heater_active (boolean)

Indicates electric heater active state.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• running_hours (number, read-only)

Hours heat pump is working.

• operating_hours_heating (number, read-only)

Operating hours for central heating.

• operating_hours_hot_water (number, read-only)

Operating hours for domestic hot water.

• heat_curve_end_point (number, read-only)

Heat curve end point.

Unit: °C with one decimal number, multiplied by 10.

236 Modbus - Alpha-Innotec - Heat Pump

• heat_curve_parallel_shift (number, read-only)

Heat curve parallel shift.

Unit: °C with one decimal number, multiplied by 10.

• heat_demand (boolean)

Informs device that heat is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

237 Modbus - Alpha-Innotec - Main DHW

Modbus - Alpha-Innotec - Main DHW
Representation of DHW related parameters of Alpha-Innotec device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

238 Modbus - Alpha-Innotec - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (integer)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water (integer, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• dhw_demand (boolean)

Domestic Hot Water demand.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• emergency_electric_element_dhw_active (boolean)

Indicates electric heater active state.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

239 Modbus - Alpha Innotec - Temperature Sensor

Modbus - Alpha Innotec - Temperature Sensor
Representation of Temperature sensor related parameters of Alpha Innotec device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

240 Modbus - Alpha Innotec - Temperature Sensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• temperature (number, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

241 Modbus - Eastron SDM630 - Energy Meter

Modbus - Eastron SDM630 - Energy Meter
Representation of Energy Meter related parameters of Eastron SDM630 device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

242 Modbus - Eastron SDM630 - Energy Meter

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• phase_1.active_power (number, read-only)

First phase active power.

Unit: mW

• phase_1.voltage (number, read-only)

First phase voltage.

Unit: mV

• phase_1.current (number, read-only)

First phase current.

Unit: mA

• phase_1.apparent_power (number, read-only)

First phase apparent power.

Unit: mVA

• phase_1.reactive_power (number, read-only)

First phase reactive power.

Unit: mVAr

• phase_1.energy_consumed_total (number, read-only)

Energy consumed lifetime on first phase.

Unit: Wh

• phase_1.energy_consumed_today (number, read-only)

Energy consumed today on first phase.

Unit: Wh

• phase_1.energy_fed_total (number, read-only)

Energy fed lifetime on first phase.

Unit: Wh

243 Modbus - Eastron SDM630 - Energy Meter

• phase_1.energy_fed_today (number, read-only)

Energy fed today on first phase.

Unit: Wh

• phase_1.energy_sum_total (number, read-only)

Energy sum (consumed + fed) lifetime on first phase.

Unit: Wh

• phase_1.energy_sum_today (number, read-only)

Energy sum (consumed + fed) today on first phase.

Unit: Wh

• phase_1.reactive_energy_consumed_total (number, read-only)

Reactive energy consumed lifetime on first phase.

Unit: VArh

• phase_1.reactive_energy_consumed_today (number, read-only)

Reactive energy consumed today on first phase.

Unit: VArh

• phase_1.reactive_energy_fed_total (number, read-only)

Reactive energy fed lifetime on first phase.

Unit: VArh

• phase_1.reactive_energy_fed_today (number, read-only)

Reactive energy fed today on first phase.

Unit: VArh

• phase_1.reactive_energy_sum_total (number, read-only)

Reactive energy sum (consumed + fed) lifetime on first phase.

Unit: VArh

• phase_1.reactive_energy_sum_today (number, read-only)

Reactive energy sum (consumed + fed) today on first phase.

Unit: VArh

• phase_2.active_power (number, read-only)

Second phase active power.

Unit: mW

• phase_2.voltage (number, read-only)

Second phase voltage.

Unit: mV

• phase_2.current (number, read-only)

Second phase current.

244 Modbus - Eastron SDM630 - Energy Meter

Unit: mA

• phase_2.apparent_power (number, read-only)

Second phase apparent power.

Unit: mVA

• phase_2.reactive_power (number, read-only)

Second phase reactive power.

Unit: mVAr

• phase_2.energy_consumed_total (number, read-only)

Energy consumed lifetime on second phase.

Unit: Wh

• phase_2.energy_consumed_today (number, read-only)

Energy consumed today on second phase.

Unit: Wh

• phase_2.energy_fed_total (number, read-only)

Energy fed lifetime on second phase.

Unit: Wh

• phase_2.energy_fed_today (number, read-only)

Energy fed today on second phase.

Unit: Wh

• phase_2.energy_sum_total (number, read-only)

Energy sum (consumed + fed) lifetime on second phase.

Unit: Wh

• phase_2.energy_sum_today (number, read-only)

Energy sum (consumed + fed) today on second phase.

Unit: Wh

• phase_2.reactive_energy_consumed_total (number, read-only)

Reactive energy consumed lifetime on second phase.

Unit: VArh

• phase_2.reactive_energy_consumed_today (number, read-only)

Reactive energy consumed today on second phase.

Unit: VArh

• phase_2.reactive_energy_fed_total (number, read-only)

Reactive energy fed lifetime on second phase.

Unit: VArh

245 Modbus - Eastron SDM630 - Energy Meter

• phase_2.reactive_energy_fed_today (number, read-only)

Reactive energy fed today on second phase.

Unit: VArh

• phase_2.reactive_energy_sum_total (number, read-only)

Reactive energy sum (consumed + fed) lifetime on second phase.

Unit: VArh

• phase_2.reactive_energy_sum_today (number, read-only)

Reactive energy sum (consumed + fed) today on second phase.

Unit: VArh

• phase_3.active_power (number, read-only)

Third phase active power.

Unit: mW

• phase_3.voltage (number, read-only)

Third phase voltage.

Unit: mV

• phase_3.current (number, read-only)

Third phase current.

Unit: mA

• phase_3.apparent_power (number, read-only)

Third phase apparent power.

Unit: mVA

• phase_3.reactive_power (number, read-only)

Third phase reactive power.

Unit: mVAr

• phase_3.energy_consumed_total (number, read-only)

Energy consumed lifetime on third phase.

Unit: Wh

• phase_3.energy_consumed_today (number, read-only)

Energy consumed today on third phase.

Unit: Wh

• phase_3.energy_fed_total (number, read-only)

Energy fed lifetime on third phase.

Unit: Wh

• phase_3.energy_fed_today (number, read-only)

Energy fed today on third phase.

246 Modbus - Eastron SDM630 - Energy Meter

Unit: Wh

• phase_3.energy_sum_total (number, read-only)

Energy sum (consumed + fed) lifetime on third phase.

Unit: Wh

• phase_3.energy_sum_today (number, read-only)

Energy sum (consumed + fed) today on third phase.

Unit: Wh

• phase_3.reactive_energy_consumed_total (number, read-only)

Reactive energy consumed lifetime on third phase.

Unit: VArh

• phase_3.reactive_energy_consumed_today (number, read-only)

Reactive energy consumed today on third phase.

Unit: VArh

• phase_3.reactive_energy_fed_total (number, read-only)

Reactive energy fed lifetime on third phase.

Unit: VArh

• phase_3.reactive_energy_fed_today (number, read-only)

Reactive energy fed today on third phase.

Unit: VArh

• phase_3.reactive_energy_sum_total (number, read-only)

Reactive energy sum (consumed + fed) lifetime on third phase.

Unit: VArh

• phase_3.reactive_energy_sum_today (number, read-only)

Reactive energy sum (consumed + fed) today on third phase.

Unit: VArh

• total_active_power (number, read-only)

Total active power on all phases.

Unit: mW

• total_apparent_power (number, read-only)

Total apparent power on all phases.

Unit: mVA

• total_reactive_power (number, read-only)

Total reactive power on all phases.

Unit: mVAr

247 Modbus - Eastron SDM630 - Energy Meter

• energy_sum_total (number, read-only)

Energy sum (consumed + fed) lifetime on all phases.

Unit: Wh

• energy_sum_today (number, read-only)

Energy sum (consumed + fed) today on all phases.

Unit: Wh

• reactive_energy_sum_total (number, read-only)

Reactive energy sum (consumed + fed) lifetime on all phases.

Unit: VArh

• reactive_energy_sum_today (number, read-only)

Reactive energy sum (consumed + fed) today on all phases.

Unit: VArh

248 Modbus - EcoAir - Heat Pump

Modbus - EcoAir - Heat Pump
Representation of Heat Pump related parameters of EcoAir device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

249 Modbus - EcoAir - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (string)

State of the heat pump: on, off, emergency

• work_mode (string)

Current work mode of the heat pump: automatic, cooling, heating.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_outdoor (number, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_supply (number, read-only)

Heating supply temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_return (number, read-only)

Heating return temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_system_pressure (number, read-only)

Heating System pressure.

Unit: Bar with one decimal number, multiplied by 10.

• hot_gas_temperature (number, read-only)

Hot Gas temperature.

Unit: °C with one decimal number, multiplied by 10.

• condensation_temperature (number, read-only)

Condensation temperature.

Unit: °C with one decimal number, multiplied by 10.

250 Modbus - EcoAir - Heat Pump

• evaporation_temperature (number, read-only)

Evaporation temperature.

Unit: °C with one decimal number, multiplied by 10.

• running_hours (number, read-only)

Hours heat pump is working.

• number_of_starts (number, read-only)

Number of heat pump starts.

• electric_heater_emergency (boolean)

Indicates electric heater emergency state.

• electric_heater_active (boolean)

Indicates electric heater activation state.

• heat_demand (boolean)

Informs device that heat is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

Commands
• reset_alarms

Sends request to heat pump device to reset alarms.

251 Modbus - EcoAir - Main DHW

Modbus - EcoAir - Main DHW
Representation of DHW related parameters of EcoAir device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

252 Modbus - EcoAir - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water (number, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• dhw_demand (boolean)

Domestic Hot Water demand.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

Examples
Set target temperature to 45 in cooling work mode and 55 in other

if dateTime:changed() then
local heat_pump = modbus[7]
local dhw = modbus[8]
if heat_pump:getValue("work_mode") == "cooling" then
dhw:setValue("target_temperature", 450)

else
dhw:setValue("target_temperature", 550)

end
end

253 Modbus - EcoGeo - Heat Pump

Modbus - EcoGeo - Heat Pump
Representation of Heat Pump related parameters of EcoGeo device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

254 Modbus - EcoGeo - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (string)

State of the heat pump: on, off, emergency

• work_mode (string)

Current work mode of the heat pump: automatic, cooling, heating NOTE: Cannot
be modified when device is associated with Heat Pump Manager.

• temperature_outdoor (number, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• brine_out_temperature (number, read-only)

Brine out temperature.

Unit: °C with one decimal number, multiplied by 10.

• brine_in_temperature (number, read-only)

Brine in temperature.

Unit: °C with one decimal number, multiplied by 10.

• brine_pressure (number, read-only)

Brine pressure.

Unit: Bar with one decimal number, multiplied by 10.

• heating_supply (number, read-only)

Heating supply temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_return (number, read-only)

Heating return temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_system_pressure (number, read-only)

Heating System pressure.

255 Modbus - EcoGeo - Heat Pump

Unit: Bar with one decimal number, multiplied by 10.

• hot_gas_temperature (number, read-only)

Hot Gas temperature.

Unit: °C with one decimal number, multiplied by 10.

• condensation_temperature (number, read-only)

Condensation temperature.

Unit: °C with one decimal number, multiplied by 10.

• evaporation_temperature (number, read-only)

Evaporation temperature.

Unit: °C with one decimal number, multiplied by 10.

• running_hours (number, read-only)

Hours heat pump is working.

• number_of_starts (number, read-only)

Number of heat pump starts.

• electric_heater_emergency (boolean)

Indicates electric heater emergency state.

• electric_heater_active (boolean)

Indicates electric heater activation state.

• heat_demand (boolean)

Informs device that heat is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

Commands
• reset_alarms

Sends request to heat pump device to reset alarms.

256 Modbus - EcoGeo - Main DHW

Modbus - EcoGeo - Main DHW
Representation of DHW related parameters of EcoGeo device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

257 Modbus - EcoGeo - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water (number, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• dhw_demand (boolean)

Domestic Hot Water demand.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

Examples
Set target temperature to 45 in cooling work mode and 55 in other

if dateTime:changed() then
local heat_pump = modbus[7]
local dhw = modbus[8]
if heat_pump:getValue("work_mode") == "cooling" then
dhw:setValue("target_temperature", 450)

else
dhw:setValue("target_temperature", 550)

end
end

258 Modbus - Galmet Prima - Heat Pump

Modbus - Galmet Prima - Heat Pump
Representation of Heat Pump related parameters of Galmet Prima device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

259 Modbus - Galmet Prima - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• work_mode (string)

Current work mode of the heat pump: automatic, cooling, heating.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• fixed_target_temperature (number)

Set temperature for heating or cooling in fixed temperature mode.

Unit: °C.

• fixed_target_temperature_minimum (number, read-only)

Minimum value of fixed_target_temperature parameter.

Unit: °C.

• fixed_target_temperature_maximum (number, read-only)

Maximum value of fixed_target_temperature parameter.

Unit: °C.

• temperature_outdoor (number, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_system_pressure (number, read-only)

Heating System pressure.

Unit: Bar with one decimal number, multiplied by 10.

• hot_gas_temperature (number, read-only)

Hot gas temperature.

Unit: °C with one decimal number, multiplied by 10.

• condensation_temperature (number, read-only)

Condensation temperature.

Unit: °C with one decimal number, multiplied by 10.

260 Modbus - Galmet Prima - Heat Pump

• water_inlet_temperature (number, read-only)

Water inlet temperature.

Unit: °C with one decimal number, multiplied by 10.

• water_outlet_temperature (number, read-only)

Water outlet temperature.

Unit: °C with one decimal number, multiplied by 10.

• running_hours (number, read-only)

Hours heat pump is working.

• electric_heater_active (boolean)

Indicates electric heater active state.

• heat_demand (boolean)

Informs device that heat is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

261 Modbus - Galmet Prima - Main DHW

Modbus - Galmet Prima - Main DHW
Representation of DHW related parameters of Galmet Prima device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

262 Modbus - Galmet Prima - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water (number, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• dhw_demand (boolean)

Domestic Hot Water demand.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• electric_heater_active (boolean)

Indicates electric heater active state.

Examples
Set target temperature to 45 in cooling work mode and 55 in other

if dateTime:changed() then
local heat_pump = modbus[7]
local dhw = modbus[8]
if heat_pump:getValue("work_mode") == "cooling" then
dhw:setValue("target_temperature", 45)

else
dhw:setValue("target_temperature", 55)

end
end

263 Modbus - Galmet Prima - Temperature Sensor

Modbus - Galmet Prima - Temperature Sensor
Representation of Temperature sensor related parameters of Galmet Prima device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

264 Modbus - Galmet Prima - Temperature Sensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• temperature (number, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

265 Modbus - GoodWe MT/SMT - Inverter

Modbus - GoodWe MT/SMT - Inverter
Representation of Inverter related parameters of GoodWe MT/SMT device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

266 Modbus - GoodWe MT/SMT - Inverter

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• run_mode (string, read-only)

Inverter current run mode. Available values are: waiting, normal, fault

• pv_total_active_power (number, read-only)

Current total power produced by all photovoltaic panels.

Unit: mW

• power_to_grid (number, read-only)

Current power fed to (positive number) or consumed from (negative number) the
power grid.

Unit: mW

• energy_fed_total (number, read-only)

Amount of energy fed to the power grid over a lifetime.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• energy_fed_today (number, read-only)

Amount of energy fed to the power grid today.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• pv_1.active_power (number, read-only)

Current power produced by first group of photovoltaic panels.

Unit: mW

• pv_1.voltage (number, read-only)

Current voltage on first group of photovoltaic panels.

Unit: mV

• pv_1.current (number, read-only)

Current current on first group of photovoltaic panels.

Unit: mA

267 Modbus - GoodWe MT/SMT - Inverter

• pv_2.active_power (number, read-only)

Current power produced by second group of photovoltaic panels.

Unit: mW

• pv_2.voltage (number, read-only)

Current voltage on second group of photovoltaic panels.

Unit: mV

• pv_2.current (number, read-only)

Current current on second group of photovoltaic panels.

Unit: mA

• pv_3.active_power (number, read-only)

Current power produced by second group of photovoltaic panels.

Unit: mW

• pv_3.voltage (number, read-only)

Current voltage on second group of photovoltaic panels.

Unit: mV

• pv_3.current (number, read-only)

Current current on second group of photovoltaic panels.

Unit: mA

• pv_4.active_power (number, read-only)

Current power produced by second group of photovoltaic panels.

Unit: mW

• pv_4.voltage (number, read-only)

Current voltage on second group of photovoltaic panels.

Unit: mV

• pv_4.current (number, read-only)

Current current on second group of photovoltaic panels.

Unit: mA

• phase_1.voltage (number, read-only)

Current voltage on first phase of power grid.

Unit: mV

• phase_1.current (number, read-only)

Current current on first phase of power grid.

Unit: mA

• phase_2.voltage (number, read-only)

Current voltage on second phase of power grid.

268 Modbus - GoodWe MT/SMT - Inverter

Unit: mV

• phase_2.current (number, read-only)

Current current on second phase of power grid.

Unit: mA

• phase_3.voltage (number, read-only)

Current voltage on third phase of power grid.

Unit: mV

• phase_3.current (number, read-only)

Current current on third phase of power grid.

Unit: mA

Commands
• turn_on

Turns on inverter.

• turn_off

Turns off inverter.

269 Modbus - GoodWe SDT/MS/DNS/XS - Inverter

Modbus - GoodWe SDT/MS/DNS/XS - Inverter
Representation of Inverter related parameters of GoodWe SDT/MS/DNS/XS device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties

Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

270 Modbus - GoodWe SDT/MS/DNS/XS - Inverter

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• run_mode (string, read-only)

Inverter current run mode. Available values are: waiting, normal, fault

• pv_total_active_power (number, read-only)

Current total power produced by all photovoltaic panels.

Unit: mW

• energy_fed_total (number, read-only)

Amount of energy fed to the power grid over a lifetime.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• energy_fed_today (number, read-only)

Amount of energy fed to the power grid today.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• pv_1.active_power (number, read-only)

Current power produced by first group of photovoltaic panels.

Unit: mW

• pv_1.voltage (number, read-only)

Current voltage on first group of photovoltaic panels.

Unit: mV

• pv_1.current (number, read-only)

Current current on first group of photovoltaic panels.

Unit: mA

• pv_2.active_power (number, read-only)

Current power produced by second group of photovoltaic panels.

Unit: mW

• pv_2.voltage (number, read-only)

Current voltage on second group of photovoltaic panels.

271 Modbus - GoodWe SDT/MS/DNS/XS - Inverter

Unit: mV

• pv_2.current (number, read-only)

Current current on second group of photovoltaic panels.

Unit: mA

• phase_1.voltage (number, read-only)

Current voltage on first phase of power grid.

Unit: mV

• phase_1.current (number, read-only)

Current current on first phase of power grid.

Unit: mA

• phase_2.voltage (number, read-only)

Current voltage on second phase of power grid.

Unit: mV

• phase_2.current (number, read-only)

Current current on second phase of power grid.

Unit: mA

• phase_3.voltage (number, read-only)

Current voltage on third phase of power grid.

Unit: mV

• phase_3.current (number, read-only)

Current current on third phase of power grid.

Unit: mA

Commands
• turn_on

Turns on inverter.

• turn_off

Turns off inverter.

272 Modbus - Heatcomp - Heat Pump

Modbus - Heatcomp - Heat Pump
Representation of Heat Pump related parameters of Heatcomp device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

273 Modbus - Heatcomp - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (string)

State of the heat pump: on, off

• work_mode (string)

Current work mode of the heat pump: cooling, heating

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_outdoor (number, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_supply (number, read-only)

Heating supply temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_return (number, read-only)

Heating return temperature.

Unit: °C with one decimal number, multiplied by 10.

• hot_gas_temperature (number, read-only)

Hot Gas temperature.

Unit: °C with one decimal number, multiplied by 10.

• condensation_temperature (number, read-only)

Condensation temperature.

Unit: °C with one decimal number, multiplied by 10.

• evaporation_temperature (number, read-only)

Evaporation temperature.

Unit: °C with one decimal number, multiplied by 10.

• running_hours (number, read-only)

Hours heat pump is working.

274 Modbus - Heatcomp - Heat Pump

• compressor_percentage (number, read-only)

Compresor percentage.

Unit: %/Hz.

• heat_demand (boolean)

Informs device that heat is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• fixed_heating_target_temperature (number)

Fixed heating target temperature.

Unit: °C with one decimal number, multiplied by 10.

• fixed_cooling_target_temperature (number)

Fixed cooling target temperature.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_mode (string)

Target temperature mode: fixed, heat_curve

• heat_curve_slope (number)

Heat curve slope.

Unit: °C with one decimal number, multiplied by 10.

• heat_curve_offset (number)

Heat curve offset.

Unit: °C with one decimal number, multiplied by 10.

275 Modbus - Heatcomp - Main DHW

Modbus - Heatcomp - Main DHW
Representation of DHW related parameters of Heatcomp device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

276 Modbus - Heatcomp - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water (number, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• dhw_demand (boolean)

Domestic Hot Water demand.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

Examples
Set target temperature to 45 in cooling work mode and 55 in other

if dateTime:changed() then
local heat_pump = modbus[7]
local dhw = modbus[8]
if heat_pump:getValue("work_mode") == "cooling" then
dhw:setValue("target_temperature", 450)

else
dhw:setValue("target_temperature", 550)

end
end

277 Modbus - HeatEco - Heat Pump

Modbus - HeatEco - Heat Pump
Representation of Heat Pump related parameters of HeatEco device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

278 Modbus - HeatEco - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• work_mode (string, read-only)

Current work mode of the heat pump. Possible values: cooling_only, heating_only,
dhw_only, cooling_with_dhw, heating_with_dhw

• fixed_heating_target_temperature (integer)

Target heating temperature. Unit: °C with one decimal number, multiplied by 10.

• fixed_cooling_target_temperature (integer)

Target cooling temperature. Unit: °C with one decimal number, multiplied by 10.

• bottom_hysteresis (integer)

Damper factor, which will protect from continous on/off switching when current
temperature is below target value. Unit: °C with one decimal number, multiplied
by 10.

• top_hysteresis (integer)

Damper factor, which will protect from continous on/off switching when current
temperature is above target value. Unit: °C with one decimal number, multiplied
by 10.

• pid.proportional_gain (integer)

(Kp) Proportional gain factor of PID controller.

• pid.integral_time (integer)

(Ti) Integral time factor of PID controller.

• pid.differential_time (integer)

(Td) Differential time factor of PID controller.

• water_inlet_temperature (integer, read-only)

Water inlet temperature. Unit: °C with one decimal number, multiplied by 10.

• water_outlet_temperature (integer, read-only)

Water outlet temperature. Unit: °C with one decimal number, multiplied by 10.

279 Modbus - HeatEco - Heat Pump

• temperature_outdoor (integer, read-only)

Outdoor temperature. Unit: °C with one decimal number, multiplied by 10.

• discharge_gas_temperature (integer, read-only)

Discharge Gas temperature. Unit: °C with one decimal number, multiplied by 10.

• suction_gas_temperature (integer, read-only)

Suction Gas temperature. Unit: °C with one decimal number, multiplied by 10.

• discharge_pressure (integer, read-only)

Discharge pressure. Unit: Pascals.

• suction_pressure (integer, read-only)

Suction pressure. Unit: Pascals.

• coil_temperature (integer, read-only)

Coil temperature. Unit: °C with one decimal number, multiplied by 10.

• evaporation_temperature (integer, read-only)

Evaporation temperature. Unit: °C with one decimal number, multiplied by 10.

• flow_switch_active (boolean, read-only)

Indicates flow switch state.

• emergency_switch_active (boolean, read-only)

Indicates emergency switch state.

• terminal_signal_switch_active (boolean, read-only)

Indicates terminal signal switch state.

• sequential_protection_switch_active (boolean, read-only)

Indicates sequential protection switch state.

• fan_high_speed_active (boolean, read-only)

Indicates whether fan high speed is active.

• fan_low_speed_active (boolean, read-only)

Indicates whether fan low speed is active.

• four_way_valve_active (boolean, read-only)

Indicates whether four way valve is active.

• pump_active (boolean, read-only)

Indicates whether pump is active.

• three_way_valve_active (boolean, read-only)

Indicates whether three way valve is active.

• crankshaft_heater_active (boolean, read-only)

Indicates electric heater of crankshaft is active.

280 Modbus - HeatEco - Heat Pump

• chassis_heater_active (boolean, read-only)

Indicates electric heater of chassis is active.

• electric_heater_active (boolean, read-only)

Indicates electric heater activation state.

• fan_output (integer, read-only)

Current fan output value. Unit: % with one decimal number, multiplied by 10.

• pump_output (integer, read-only)

Current pump output value. Unit: % with one decimal number, multiplied by 10.

• fan_mode (string, read-only)

Current fan mode. Possible values: day, night, eco, pressure

• pump_mode (string, read-only)

Current pump mode. Possible values: normal, demand, interval

• eev_opening (integer, read-only)

Current opening of electrinc expansion valve. Unit: %.

• heat_demand (boolean)

Informs device that heat is demanded or not. Indirectly controls the heat pump
work mode. NOTE: Cannot be modified when device is associated with Heat
Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not. Indirectly controls the heat pump
work mode. NOTE: Cannot be modified when device is associated with Heat
Pump Manager.

281 Modbus - HeatEco - Main DHW

Modbus - HeatEco - Main DHW
Representation of DHW related parameters of HeatEco device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties

Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

282 Modbus - HeatEco - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (integer)

Desired setpoint temperature, which device will try to achieve. Unit: °C. NOTE:
Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water (integer, read-only)

Current domestic hot water temperature. Unit: °C with one decimal number,
multiplied by 10.

• bottom_hysteresis (integer)

Damper factor, which will protect from continous on/off switching when current
temperature is below target value. Unit: °C with one decimal number, multiplied
by 10.

• top_hysteresis (integer)

Damper factor, which will protect from continous on/off switching when current
temperature is above target value. Unit: °C with one decimal number, multiplied
by 10.

• dhw_demand (boolean)

Domestic Hot Water demand. NOTE: Cannot be modified when device is
associated with Heat Pump Manager.

283 Modbus - Huawei SUN2000 - Battery

Modbus - Huawei SUN2000 - Battery
Representation of Battery related parameters of Huawei SUN2000 device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

284 Modbus - Huawei SUN2000 - Battery

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (string, read-only)

Battery current state. Available values are: offline, standby, running, fault,
sleep_mode

• energy_charged_total (integer, read-only)

Amount of energy charged to the battery over a lifetime. Unit: kWh with one
decimal number, multiplied by 1000 (Wh)

• energy_charged_today (integer, read-only)

Amount of energy charged to the battery today. Unit: kWh with one decimal
number, multiplied by 1000 (Wh)

• energy_discharged_total (integer, read-only)

Amount of energy consumed from the battery over a lifetime. Unit: kWh with one
decimal number, multiplied by 1000 (Wh)

• energy_discharged_today (integer, read-only)

Amount of energy consumed from the battery today. Unit: kWh with one decimal
number, multiplied by 1000 (Wh)

• charge_power (integer, read-only)

Current charing (positive number) or discharging (negative number) power. Unit:
mW

• maximum_charging_power (integer)

Maximum charging power. Unit: W with three decimal number, multiplied by
1000 (mW).

• maximum_discharging_power (integer)

Maximum charging power. Unit: W with three decimal number, multiplied by
1000 (mW).

• charging_cutoff_capacity (integer)

Charging cutoff capacity. Unit: % with one decimal number, multiplied by 10.

• discharge_cutoff_capacity (integer)

Discharge cutoff capacity. Unit: % with one decimal number, multiplied by 10.

285 Modbus - Huawei SUN2000 - Energy Meter

Modbus - Huawei SUN2000 - Energy Meter
Representation of Energy Meter related parameters of Huawei SUN2000 device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

286 Modbus - Huawei SUN2000 - Energy Meter

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• pv_total_active_power (integer, read-only)

Current total power produced by all photovoltaic panels. Unit: mW

• energy_produced_total (integer, read-only)

Total amount of energy produced by PV over a lifetime. Unit: kWh with one
decimal number, multiplied by 1000 (Wh).

• energy_produced_today (integer, read-only)

Amount of energy produced by PV today. Unit: kWh with one decimal number,
multiplied by 1000 (Wh).

• power_to_grid (integer, read-only)

Current power fed to (positive number) or consumed from (negative number) the
power grid. Unit: mW

• phase_1.voltage (integer, read-only)

First phase voltage. Unit: mV

• phase_1.current (integer, read-only)

First phase current. Unit: mA

• phase_2.voltage (integer, read-only)

Second phase voltage. Unit: mV

• phase_2.current (integer, read-only)

Second phase current. Unit: mA

• phase_3.voltage (integer, read-only)

Third phase voltage. Unit: mV

• phase_3.current (integer, read-only)

Third phase current. Unit: mA

287 Modbus - Huawei SUN2000 - Inverter

Modbus - Huawei SUN2000 - Inverter
Representation of Inverter related parameters of Huawei SUN2000 device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

288 Modbus - Huawei SUN2000 - Inverter

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• run_mode (string, read-only)

Inverter current run mode. Available values are: standby, starting, on_grid,
grid_power_limited, grid_self_derating, shutdown_fault, shutdown_command,
grid_scheduling, spot_check_ready, spot_checking, inspecting, afci_self_check,
iv_scanning, dc_input_detection, running

• pv_1.active_power (integer, read-only)

Current power produced by first group of photovoltaic panels. Unit: mW

• pv_1.voltage (integer, read-only)

Current voltage on first group of photovoltaic panels. Unit: mV

• pv_1.current (integer, read-only)

Current current on first group of photovoltaic panels. Unit: mA

• pv_2.active_power (integer, read-only)

Current power produced by second group of photovoltaic panels. Unit: mW

• pv_2.voltage (integer, read-only)

Current voltage on second group of photovoltaic panels. Unit: mV

• pv_2.current (integer, read-only)

Current current on second group of photovoltaic panels. Unit: mA

• pv_3.active_power (integer, read-only)

Current power produced by third group of photovoltaic panels. Unit: mW

• pv_3.voltage (integer, read-only)

Current voltage on third group of photovoltaic panels. Unit: mV

• pv_3.current (integer, read-only)

Current current on third group of photovoltaic panels. Unit: mA

• pv_4.active_power (integer, read-only)

Current power produced by fourth group of photovoltaic panels. Unit: mW

289 Modbus - Huawei SUN2000 - Inverter

• pv_4.voltage (integer, read-only)

Current voltage on fourth group of photovoltaic panels. Unit: mV

• pv_4.current (integer, read-only)

Current current on fourth group of photovoltaic panels. Unit: mA

Commands
• turn_on

Turns on inverter.

• turn_off

Turns off inverter.

290 Modbus - Itho - Heat Pump

Modbus - Itho - Heat Pump
Representation of Heat Pump related parameters of Itho device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

291 Modbus - Itho - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (string)

State of the heat pump: on, off

• fixed_heating_target_temperature (number)

Set temperature for heating in fixed temperature mode.

Unit: °C.

• temperature_outdoor (number, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• temperature_indoor (number, read-only)

Indoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_indoor (number, read-only)

Set indoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_supply (number, read-only)

Heating supply temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_return (number, read-only)

Heating return temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_system_pressure (number, read-only)

Heating System pressure.

Unit: Bar with one decimal number, multiplied by 10.

292 Modbus - Itho - Heat Pump

• hot_gas_temperature (number, read-only)

Hot gas temperature.

Unit: °C with one decimal number, multiplied by 10.

• condensation_temperature (number, read-only)

Condensation temperature.

Unit: °C with one decimal number, multiplied by 10.

• evaporation_temperature (number, read-only)

Evaporation temperature.

Unit: °C with one decimal number, multiplied by 10.

• brine_out_temperature (number, read-only)

Brine out temperature.

Unit: °C with one decimal number, multiplied by 10.

• brine_in_temperature (number, read-only)

Brine in temperature.

Unit: °C with one decimal number, multiplied by 10.

• energy_used_for_hot_water (number, read-only)

Energy used for hot water.

Unit: kW/h.

• energy_used_for_heating (number, read-only)

Energy used for heating.

Unit: kW/h.

• energy_used_for_cooling (number, read-only)

Energy used for cooling.

Unit: kW/h.

• energy_used_in_stand_by (number, read-only)

Energy used in stand-by.

Unit: kW/h.

• energy_used_total (number, read-only)

Energy used total.

Unit: kW/h.

• source_supply_energy (number, read-only)

Energy in source supply.

Unit: MWh with two decimal numbers, multiplied by 100.

293 Modbus - Itho - Heat Pump

• source_return_energy (number, read-only)

Energy in source return.

Unit: MWh with two decimal numbers, multiplied by 100.

• electric_heater_active (boolean)

Indicates electric heater active state.

• running_hours (number, read-only)

Hours heat pump is working.

• operating_hours_heating (number, read-only)

Operating hours for central heating.

• operating_hours_hot_water (number, read-only)

Operating hours for domestic hot water.

• number_of_starts (number, read-only)

Number of compressor starts.

• heat_curve_end_point (number, read-only)

Heat curve end point.

Unit: °C with one decimal number, multiplied by 10.

• heat_curve_base_point (number, read-only)

Heat curve base point.

Unit: °C with one decimal number, multiplied by 10.

• heat_demand (boolean)

Informs device that heat is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

294 Modbus - Itho - Main DHW

Modbus - Itho - Main DHW
Representation of DHW related parameters of Itho device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

295 Modbus - Itho - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water (number, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• dhw_demand (boolean)

Domestic Hot Water demand.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• hysteresis (number)

Damper factor, which will protect from continous on/off switching when current
temperature is near target value.

Unit: °C with one decimal number, multiplied by 10.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water_lower_tank (number, read-only)

Current water temperature of lower tank sensor.

Unit: °C with one decimal number, multiplied by 10.

296 Modbus - Itho - Temperature Sensor

Modbus - Itho - Temperature Sensor
Representation of Temperature sensor related parameters of Itho device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

297 Modbus - Itho - Temperature Sensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• temperature (number, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

298 Modbus - Kaisai KHC - Heat Pump

Modbus - Kaisai KHC - Heat Pump
Representation of Heat Pump related parameters of Kaisai KHC device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

299 Modbus - Kaisai KHC - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• work_mode (string)

Current work mode of the heat pump: automatic, cooling, heating.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• fixed_target_temperature (number)

Set temperature for heating or cooling in fixed temperature mode.

Unit: °C.

• fixed_target_temperature_minimum (number, read-only)

Minimum value of fixed_target_temperature parameter.

Unit: °C.

• fixed_target_temperature_maximum (number, read-only)

Maximum value of fixed_target_temperature parameter.

Unit: °C.

• temperature_outdoor (number, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_system_pressure (number, read-only)

Heating System pressure.

Unit: Bar with one decimal number, multiplied by 10.

• hot_gas_temperature (number, read-only)

Hot gas temperature.

Unit: °C with one decimal number, multiplied by 10.

• condensation_temperature (number, read-only)

Condensation temperature.

Unit: °C with one decimal number, multiplied by 10.

300 Modbus - Kaisai KHC - Heat Pump

• water_inlet_temperature (number, read-only)

Water inlet temperature.

Unit: °C with one decimal number, multiplied by 10.

• water_outlet_temperature (number, read-only)

Water outlet temperature.

Unit: °C with one decimal number, multiplied by 10.

• running_hours (number, read-only)

Hours heat pump is working.

• electric_heater_active (boolean)

Indicates electric heater active state.

• heat_demand (boolean)

Informs device that heat is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

301 Modbus - Kaisai KHC - Main DHW

Modbus - Kaisai KHC - Main DHW
Representation of DHW related parameters of Kaisai KHC device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

302 Modbus - Kaisai KHC - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (integer)

Desired setpoint temperature, which device will try to achieve.

Unit: °C. NOTE: Cannot be modified when device is associated with Heat Pump
Manager.

• temperature_domestic_hot_water (integer, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• dhw_demand (boolean)

Domestic Hot Water demand.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• electric_heater_active (boolean)

Indicates electric heater active state.

Examples
Set target temperature to 45 in cooling work mode and 55 in other

if dateTime:changed() then
local heat_pump = modbus[7]
local dhw = modbus[8]
if heat_pump:getValue("work_mode") == "cooling" then
dhw:setValue("target_temperature", 45)

else
dhw:setValue("target_temperature", 55)

end
end

303 Modbus - Kaisai KHC - Temperature Sensor

Modbus - Kaisai KHC - Temperature Sensor
Representation of Temperature sensor related parameters of Kaisai KHC device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

304 Modbus - Kaisai KHC - Temperature Sensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• temperature (number, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

305 Modbus - Mitsubishi Ecodan - Heat Pump

Modbus - Mitsubishi Ecodan - Heat Pump
Representation of Heat Pump related parameters of Mitsubishi Ecodan device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

306 Modbus - Mitsubishi Ecodan - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (string)

State of the heat pump: on, off

• temperature_outdoor (integer, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_supply (integer, read-only)

Heating supply temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_return (integer, read-only)

Heating return temperature.

Unit: °C with one decimal number, multiplied by 10.

• running_hours (integer, read-only)

Hours heat pump is working.

• zone1.target_temperature (integer)

Target temperature at first zone.

Unit: °C with one decimal number, multiplied by 10.

• zone1.current_temperature (integer, read-only)

Current temperature at first zone.

Unit: °C with one decimal number, multiplied by 10.

• zone1.work_mode (string)

Work mode at first zone: heating_room_temp, heating_flow_temp,
heating_heat_curve, cooling_flow_temp

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• zone2.target_temperature (integer)

Target temperature at second zone.

307 Modbus - Mitsubishi Ecodan - Heat Pump

Unit: °C with one decimal number, multiplied by 10.

• zone2.current_temperature (integer, read-only)

Current temperature at second zone.

Unit: °C with one decimal number, multiplied by 10.

• zone2.work_mode (string)

Work mode at second zone: heating_room_temp, heating_flow_temp,
heating_heat_curve, cooling_flow_temp

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• heat_demand (boolean, read-only)

Informs that heating is demanded.

• cool_demand (boolean, read-only)

Informs that cooling is demanded.

308 Modbus - Mitsubishi Ecodan - Main DHW

Modbus - Mitsubishi Ecodan - Main DHW
Representation of DHW related parameters of Mitsubishi Ecodan device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

309 Modbus - Mitsubishi Ecodan - Main DHW

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_domestic_hot_water (number, read-only)

Current domestic hot water temperature.

Unit: °C with one decimal number, multiplied by 10.

• dhw_demand (boolean, read-only)

Domestic Hot Water demand.

310 Modbus - Remeha Elga ACE - Heat Pump

Modbus - Remeha Elga ACE - Heat Pump
Representation of Heat Pump related parameters of Remeha Elga ACE device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

311 Modbus - Remeha Elga ACE - Heat Pump

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• work_mode (string)

Current work mode of the heat pump: cooling, heating

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• temperature_indoor (number, read-only)

Indoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_indoor (number, read-only)

Set indoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• central_heating_target_temperature (number, read-only)

Central heating set temperature.

Unit: °C with one decimal number, multiplied by 10.

• fixed_heating_target_temperature (number)

Set temperature for heating in fixed temperature mode.

Unit: °C with one decimal number, multiplied by 10.

• temperature_outdoor (number, read-only)

Outdoor temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_supply (number, read-only)

Heating supply temperature.

Unit: °C with one decimal number, multiplied by 10.

• heating_return (number, read-only)

Heating return temperature.

Unit: °C with one decimal number, multiplied by 10.

312 Modbus - Remeha Elga ACE - Heat Pump

• heating_system_pressure (number, read-only)

Heating system pressure.

Unit: Bar with one decimal number, multiplied by 10.

• energy_used_for_heating (number, read-only)

Energy used for heating.

Unit: kW/h with one decimal number, multiplied by 10.

• current_power (number, read-only)

Current relative power produced.

Unit: kW with one decimal number, multiplied by 10.

• alarm_code (number, read-only)

Device flow alarm code.

• alarm_description (number, read-only)

Alarm code description id.

• running_hours (number, read-only)

Hours heat pump is working.

• operating_hours_heating (number, read-only)

Operating hours for central heating.

• heat_demand (boolean)

Informs device that heat is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

• cool_demand (boolean)

Informs device that cool is demanded or not.

NOTE: Cannot be modified when device is associated with Heat Pump Manager.

Commands
• reset_alarms

Sends request to heat pump device to reset alarms.

313 Modbus - Remeha Elga ACE - Temperature Sensor

Modbus - Remeha Elga ACE - Temperature Sensor
Representation of Temperature sensor related parameters of Remeha Elga ACE
device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

314 Modbus - Remeha Elga ACE - Temperature Sensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• temperature (number, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

315 Modbus - SolarEdge with MTTP Extension Model - Inverter

Modbus - SolarEdge with MTTP Extension Model -
Inverter
Representation of Inverter related parameters of SolarEdge device with MTTP
Extension Model.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

316 Modbus - SolarEdge with MTTP Extension Model - Inverter

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• run_mode (string, read-only)

Inverter current run mode. Available values are: off, sleeping, starting, working,
throttled, shutting_down, fault, standby

• energy_produced_total (number, read-only)

Total amount of energy produced by PV over a lifetime.

Unit: kWh with one decimal number, multiplied by 1000 (Wh).

• energy_produced_today (number, read-only)

Amount of energy produced by PV today.

Unit: kWh with one decimal number, multiplied by 1000 (Wh).

• power_to_grid (number, read-only)

Current power fed to (positive number) or consumed from (negative number) the
power grid.

Unit: mW

• pv_total_active_power (number, read-only)

Current total power produced by all photovoltaic panels.

Unit: mW

• pv_1.active_power (number, read-only)

Current power produced by first group of photovoltaic panels.

Unit: mW

• pv_1.voltage (number, read-only)

Current voltage on first group of photovoltaic panels.

Unit: mV

317 Modbus - SolarEdge with MTTP Extension Model - Inverter

• pv_1.current (number, read-only)

Current current on first group of photovoltaic panels.

Unit: mA

• pv_2.active_power (number, read-only)

Current power produced by second group of photovoltaic panels.

Unit: mW

• pv_2.voltage (number, read-only)

Current voltage on second group of photovoltaic panels.

Unit: mV

• pv_2.current (number, read-only)

Current current on second group of photovoltaic panels.

Unit: mA

• pv_3.active_power (number, read-only)

Current power produced by third group of photovoltaic panels.

Unit: mW

• pv_3.voltage (number, read-only)

Current voltage on third group of photovoltaic panels.

Unit: mV

• pv_3.current (number, read-only)

Current current on third group of photovoltaic panels.

Unit: mA

• advanced_power_control_enabled (boolean)

Allows to set advanced power control settings.

• reactive_power_config (string)

Reactive power config. Available values are: fixed_cosphi, fixed_q, cosphi, q, rrcr.

• active_power_limit (number)

Percent of max power at which inverter is going to work. Unit: percent Requires
advanced_power_control_enabled to be set to true and reactive_power_config

to rrcr .

318 Modbus - SolarEdge - Inverter

Modbus - SolarEdge - Inverter
Representation of Inverter related parameters of SolarEdge device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server. Property modification is
possible via REST API, web app or directly from scripts using modbus container eg.
modbus[6] gives you access to device with ID 6. Modbus devices have global scope
and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

319 Modbus - SolarEdge - Inverter

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date , update_available ,
recovery , pending , downloading , updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• run_mode (string, read-only)

Inverter current run mode. Available values are: off, sleeping, starting, working,
throttled, shutting_down, fault, standby

• energy_produced_total (number, read-only)

Total amount of energy produced by PV over a lifetime. Unit: kWh with one
decimal number, multiplied by 1000 (Wh).

• energy_produced_today (number, read-only)

Amount of energy produced by PV today. Unit: kWh with one decimal number,
multiplied by 1000 (Wh).

• power_to_grid (number, read-only)

Current power fed to (positive number) or consumed from (negative number) the
power grid. Unit: mW

• pv.active_power (number, read-only)

Current power produced by photovoltaic panels. Unit: mW

• pv.voltage (number, read-only)

Current voltage on photovoltaic panels. Unit: mV

• pv.current (number, read-only)

Current current on photovoltaic panels. Unit: mA

• advanced_power_control_enabled (boolean)

Allows to set advanced power control settings.

• reactive_power_config (string)

Reactive power config. Available values are: fixed_cosphi, fixed_q, cosphi, q, rrcr.

• active_power_limit (number)

Percent of max power at which inverter is going to work. Unit: percent Requires
advanced_power_control_enabled to be set to true and reactive_power_config

to rrcr .

320 Modbus - Solax X1 - Battery

Modbus - Solax X1 - Battery
Representation of Battery related parameters of Solax X1 device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

321 Modbus - Solax X1 - Battery

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• soc (number, read-only)

Current state of charge.

Unit: %

• energy_charged_total (number, read-only)

Amount of energy charged to the battery over a lifetime.

Unit: kWh with one decimal number, multiplied by 1000 (Wh)

• energy_charged_today (number, read-only)

Amount of energy charged to the battery today.

Unit: kWh with one decimal number, multiplied by 1000 (Wh)

• energy_discharged_total (number, read-only)

Amount of energy consumed from the battery over a lifetime.

Unit: kWh with one decimal number, multiplied by 1000 (Wh)

• energy_discharged_today (number, read-only)

Amount of energy consumed from the battery today.

Unit: kWh with one decimal number, multiplied by 1000 (Wh)

• charge_power (number, read-only)

Current charing (positive number) or discharging (negative number) power. Unit:
mW

Commands
• charge

Calls battery to charge during given period of time.

Argument:
packed arguments (table)

◦ active power in mW (number)

322 Modbus - Solax X1 - Battery

• minumum: 0
• maximum: 2147483647

◦ duration time in seconds (number)

• minumum: 0
• maximum: 65535

• discharge

Calls battery to discharge during given period of time.

Argument:
packed arguments (table)

◦ active power in mW (number)

• minumum: 0
• maximum: 2147483647

◦ duration time in seconds (number)

• minumum: 0
• maximum: 65535

Examples
Turn on battery charging with 1kW for 1 hour at 1:00PM

if dateTime:changed() then
if dateTime:getHours() == 13 and dateTime:getMinutes() == 0 then
modbus[2]:call("charge", { 1000000, 3600 })

end
end

323 Modbus - Solax X1 - Inverter

Modbus - Solax X1 - Inverter
Representation of Inverter related parameters of Solax X1 device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

324 Modbus - Solax X1 - Inverter

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• run_mode (string, read-only)

Inverter current run mode. Available values are: waiting, checking, normal, fault,
permanent_fault, update, off_grid_waiting, off_grid, self_testing, idle, standby

• pv_total_active_power (number, read-only)

Current total power produced by all photovoltaic panels.

Unit: mW

• energy_produced_total (number, read-only)

Total amount of energy produced by PV over a lifetime.

Unit: kWh with one decimal number, multiplied by 1000 (Wh).

• energy_produced_today (number, read-only)

Amount of energy produced by PV today.

Unit: kWh with one decimal number, multiplied by 1000 (Wh).

• power_to_grid (number, read-only)

Current power fed to (positive number) or consumed from (negative number) the
power grid.

Unit: mW

• energy_fed_total (number, read-only)

Amount of energy fed to the power grid over a lifetime.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• energy_fed_total (number, read-only)

Amount of energy fed to the power grid today.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• energy_consumed_total (number, read-only)

Amount of energy consumed from the power grid over a lifetime.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

325 Modbus - Solax X1 - Inverter

• energy_consumed_today (number, read-only)

Amount of energy consumed from the power grid over today.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• pv_1.active_power (number, read-only)

Current power produced by first group of photovoltaic panels.

Unit: mW

• pv_1.voltage (number, read-only)

Current voltage on first group of photovoltaic panels.

Unit: mV

• pv_1.current (number, read-only)

Current current on first group of photovoltaic panels.

Unit: mA

• pv_2.active_power (number, read-only)

Current power produced by second group of photovoltaic panels.

Unit: mW

• pv_2.voltage (number, read-only)

Current voltage on second group of photovoltaic panels.

Unit: mV

• pv_2.current (number, read-only)

Current current on second group of photovoltaic panels.

Unit: mA

• grid.active_power (number, read-only)

Current power on the power grid.

Unit: mW

• grid.voltage (number, read-only)

Current voltage on the power grid.

Unit: mV

• grid.current (number, read-only)

Current current on the power grid.

Unit: mA

326 Modbus - Solax X3 - Battery

Modbus - Solax X3 - Battery
Representation of Battery related parameters of Solax X3 device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

327 Modbus - Solax X3 - Battery

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• soc (number, read-only)

Current state of charge.

Unit: %

• energy_charged_total (number, read-only)

Amount of energy charged to the battery over a lifetime.

Unit: kWh with one decimal number, multiplied by 1000 (Wh)

• energy_charged_today (number, read-only)

Amount of energy charged to the battery today.

Unit: kWh with one decimal number, multiplied by 1000 (Wh)

• energy_discharged_total (number, read-only)

Amount of energy consumed from the battery over a lifetime.

Unit: kWh with one decimal number, multiplied by 1000 (Wh)

• energy_discharged_today (number, read-only)

Amount of energy consumed from the battery today.

Unit: kWh with one decimal number, multiplied by 1000 (Wh)

• charge_power (number, read-only)

Current charing (positive number) or discharging (negative number) power. Unit:
mW

Commands
• charge

Calls battery to charge during given period of time.

Argument:
packed arguments (table)

◦ active power in mW (number)

328 Modbus - Solax X3 - Battery

• minumum: 0
• maximum: 2147483647

◦ duration time in seconds (number)

• minumum: 0
• maximum: 65535

• discharge

Calls battery to discharge during given period of time.

Argument:
packed arguments (table)

◦ active power in mW (number)

• minumum: 0
• maximum: 2147483647

◦ duration time in seconds (number)

• minumum: 0
• maximum: 65535

Examples
Turn on battery charging with 1kW for 1 hour at 1:00PM

if dateTime:changed() then
if dateTime:getHours() == 13 and dateTime:getMinutes() == 0 then
modbus[2]:call("charge", { 1000000, 3600 })

end
end

329 Modbus - Solax X3 - Inverter

Modbus - Solax X3 - Inverter
Representation of Inverter related parameters of Solax X3 device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

330 Modbus - Solax X3 - Inverter

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• run_mode (string, read-only)

Inverter current run mode. Available values are: waiting, checking, normal, fault,
permanent_fault, update, off_grid_waiting, off_grid, self_testing, idle, standby

• pv_total_active_power (number, read-only)

Current total power produced by all photovoltaic panels.

Unit: mW

• energy_produced_total (number, read-only)

Total amount of energy produced by PV over a lifetime.

Unit: kWh with one decimal number, multiplied by 1000 (Wh).

• energy_produced_today (number, read-only)

Amount of energy produced by PV today.

Unit: kWh with one decimal number, multiplied by 1000 (Wh).

• power_to_grid (number, read-only)

Current power fed to (positive number) or consumed from (negative number) the
power grid.

Unit: mW

• energy_fed_total (number, read-only)

Amount of energy fed to the power grid over a lifetime.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• energy_fed_today (number, read-only)

Amount of energy fed to the power grid today.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• energy_consumed_total (number, read-only)

Amount of energy consumed from the power grid over a lifetime.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

331 Modbus - Solax X3 - Inverter

• energy_consumed_today (number, read-only)

Amount of energy consumed from the power grid over today.

Unit: kWh with two decimal numbers, multiplied by 1000 (Wh)

• pv_1.active_power (number, read-only)

Current power produced by first group of photovoltaic panels.

Unit: mW

• pv_1.voltage (number, read-only)

Current voltage on first group of photovoltaic panels.

Unit: mV

• pv_1.current (number, read-only)

Current current on first group of photovoltaic panels.

Unit: mA

• pv_2.active_power (number, read-only)

Current power produced by second group of photovoltaic panels.

Unit: mW

• pv_2.voltage (number, read-only)

Current voltage on second group of photovoltaic panels.

Unit: mV

• pv_2.current (number, read-only)

Current current on second group of photovoltaic panels.

Unit: mA

• grid_total_active_power (number, read-only)

Current total power on the grid.

Unit: mW

• phase_1.active_power (number, read-only)

Current power on first phase of power grid.

Unit: mW

• phase_1.voltage (number, read-only)

Current voltage on first phase of power grid.

Unit: mV

• phase_1.current (number, read-only)

Current current on first phase of power grid.

Unit: mA

• phase_2.active_power (number, read-only)

Current power on second phase of power grid.

332 Modbus - Solax X3 - Inverter

Unit: mW

• phase_2.voltage (number, read-only)

Current voltage on second phase of power grid.

Unit: mV

• phase_2.current (number, read-only)

Current current on second phase of power grid.

Unit: mA

• phase_3.active_power (number, read-only)

Current power on third phase of power grid.

Unit: mW

• phase_3.voltage (number, read-only)

Current voltage on third phase of power grid.

Unit: mV

• phase_3.current (number, read-only)

Current current on third phase of power grid.

Unit: mA

333 Modbus - Solis - Inverter

Modbus - Solis - Inverter
Representation of Inverter related parameters of Solis device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

334 Modbus - Solis - Inverter

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• run_mode (string, read-only)

Inverter current run mode. Available values are: unknown, normal, initializing,
grid_off, fault_to_skip, standby, derating, limitating, backup_ov_load, grid_surge,
fan_fault

• pv_total_active_power (integer, read-only)

Current total power produced by all photovoltaic panels. Unit: mW

• grid_total_active_power (integer, read-only)

Current total power on the grid. Unit: mW

• energy_produced_total (integer, read-only)

Total amount of energy produced by PV over a lifetime. Unit: kWh with one
decimal number, multiplied by 1000 (Wh).

• energy_produced_today (integer, read-only)

Amount of energy produced by PV today. Unit: kWh with one decimal number,
multiplied by 1000 (Wh).

• power_to_grid (integer, read-only)

Current power fed to (positive number) or consumed from (negative number) the
power grid. Unit: mW

• pv_1.active_power (integer, read-only)

Current power produced by first group of photovoltaic panels. Unit: mW

• pv_1.voltage (integer, read-only)

Current voltage on first group of photovoltaic panels. Unit: mV

• pv_1.current (integer, read-only)

Current current on first group of photovoltaic panels. Unit: mA

• pv_2.active_power (integer, read-only)

Current power produced by second group of photovoltaic panels. Unit: mW

335 Modbus - Solis - Inverter

• pv_2.voltage (integer, read-only)

Current voltage on second group of photovoltaic panels. Unit: mV

• pv_2.current (integer, read-only)

Current current on second group of photovoltaic panels. Unit: mA

• pv_3.active_power (integer, read-only)

Current power produced by third group of photovoltaic panels. Unit: mW

• pv_3.voltage (integer, read-only)

Current voltage on third group of photovoltaic panels. Unit: mV

• pv_3.current (integer, read-only)

Current current on third group of photovoltaic panels. Unit: mA

• pv_4.active_power (integer, read-only)

Current power produced by fourth group of photovoltaic panels. Unit: mW

• pv_4.voltage (integer, read-only)

Current voltage on fourth group of photovoltaic panels. Unit: mV

• pv_4.current (integer, read-only)

Current current on fourth group of photovoltaic panels. Unit: mA

• phase_1.voltage (integer, read-only)

Current voltage on first phase of power grid. Unit: mV

• phase_1.current (integer, read-only)

Current current on first phase of power grid. Unit: mA

• phase_2.voltage (integer, read-only)

Current voltage on second phase of power grid. Unit: mV

• phase_2.current (integer, read-only)

Current current on second phase of power grid. Unit: mA

• phase_3.voltage (integer, read-only)

Current voltage on third phase of power grid. Unit: mV

• phase_3.current (integer, read-only)

Current current on third phase of power grid. Unit: mA

336 Modbus - P1 Energy Meter

Modbus - P1 Energy Meter
Representation of P1 Energy Meter device.

Device may be added using web application. Can be edited or deleted via REST API
or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using modbus container eg. modbus[6] gives you access to device with ID 6.
Modbus devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

337 Modbus - P1 Energy Meter

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• tariff_1.energy_consumed_total (integer, read-only)

Total energy delivered to client in tariff 1. Unit: kWh with three decimal numbers,
multiplied by 1000 (Wh).

• tariff_2.energy_consumed_total (integer, read-only)

Total energy delivered to client in tariff 2. Unit: kWh with three decimal numbers,
multiplied by 1000 (Wh).

• tariff_1.energy_fed_total (integer, read-only)

Total energy delivered by client in tariff 1. Unit: kWh with three decimal numbers,
multiplied by 1000 (Wh).

• tariff_2.energy_fed_total (integer, read-only)

Total energy delivered by client in tariff 2. Unit: kWh with three decimal numbers,
multiplied by 1000 (Wh).

• tariff_indicator (integer, read-only)

Electricity tariff indicator.

• power_to_grid (integer, read-only)

Current power fed to the power grid. Unit: mW

• power_from_grid (integer, read-only)

Current power consumed from the power grid. Unit: mW

• number_of_power_failures (integer, read-only)

Number of power failures.

• number_of_long_power_failures (integer, read-only)

Number of long power failures.

• phase_1.voltage (integer, read-only)

First phase voltage. Unit: mV

• phase_1.current (integer, read-only)

First phase current. Unit: mA

338 Modbus - P1 Energy Meter

• phase_1.active_power (integer, read-only)

First phase active power. Unit: mW

• phase_1.number_of_voltage_sags (integer, read-only)

First phase total number of voltage sags.

• phase_1.number_of_voltage_swells (integer, read-only)

First phase total number of voltage swells.

• phase_2.voltage (integer, read-only)

Second phase voltage. Unit: mV

• phase_2.current (integer, read-only)

Second phase current. Unit: mA

• phase_2.active_power (integer, read-only)

Second phase active power. Unit: mW

• phase_2.number_of_voltage_sags (integer, read-only)

Second phase total number of voltage sags.

• phase_2.number_of_voltage_swells (integer, read-only)

Second phase total number of voltage swells.

• phase_3.voltage (integer, read-only)

Third phase voltage. Unit: mV

• phase_3.current (integer, read-only)

Third phase current. Unit: mA

• phase_3.active_power (integer, read-only)

Third phase active power. Unit: mW

• phase_3.number_of_voltage_sags (integer, read-only)

Third phase total number of voltage sags.

• phase_3.number_of_voltage_swells (integer, read-only)

Third phase total number of voltage swells.

• p1_version_id (integer, read-only)

P1 version information.

• software_version (string, read-only)

P1 converter software version.

339 Virtual - Thermostat

Virtual - Thermostat
The virtual thermostat controls the output devices based on the readings from the
sensors.

Thermostat has three working modes: schedule , time_limited and constant . By
default thermostat works in constant mode.

• In constant mode thermostat has one target temperature which is used for
algorithm.

• In time_limited mode thermostat has one target temperature which is used for
algorithm until target_temperature_mode.remaining_time reaches 0. It will
switch back to previous target temperature mode afterwards.

• In schedule mode there are many target temperatures in time. User can set
several time ranges during the day in which target temperature applies.
Fallback temperature applies otherwise.

User can set different working schedule for every week day.

For example: If user setted schedule to be 6:00 - 20:00, temperature applies
between 6:00 - 20:00. Fallback temperature applies between 0:00 - 5:59 and
20:01 - 23:59.

The thermostat can be associated with: Room sensor (temperature sensor), floor
sensor (temperature sensor), humidity sensor, temperature regulator, radiator
actuator, relay, window/door opening sensor, two state input sensor.

The room sensor is a required device.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

340 Virtual - Thermostat

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (boolean, read-only)

Current working state (active (true) / idle (false)).

• temperature (integer, read-only)

Temperature value forwarded from associated sensor or 0 if not associated. Unit:
°C with one decimal number, multiplied by 10.

• floor_temperature (integer, read-only)

Floor Temperature value forwarded from associated sensor or 0 if not associated.

Unit: °C with one decimal number, multiplied by 10.

• humidity (integer, read-only)

Humidity value forwarded from associated sensor or 0 if not associated. Unit:
rH% with one decimal number, multiplied by 10.

• target_temperature (integer)

Current target temperature. Modification will result in change of constant or
time_limited target temperature to the desired value. If thermostat works in
time_limited mode it will change target temperature only, not affecting
remaining_time . If thermostat works in schedule mode it will change target
temperature mode to constant .

Unit: °C with one decimal number, multiplied by 10.

341 Virtual - Thermostat

• target_temperature_mode.current (string, read-only)

Thermostat target temperature mode. Specifies if thermostat is working in
constant mode with one target temperature, time_limited mode with one
temporary target temperature or according to schedule in schedule mode with
many target temperatures in time, configured by user. Parameter is read only, use
commands to change target temperature mode! Parameter cannot be schedule if
thermostat doesnt have has_schedule label! Available values: constant, schedule,
time_limited. Default: constant

• target_temperature_mode.previous (string, read-only)

Thermostat previous target temperature mode.

Available values: constant, schedule, time_limited. Default: constant

• target_temperature_mode.remaining_time (integer, read-only)

Remaining time until time_limited mode ends. Cannot be modified directly - use
commands.

Unit: minutes.

• target_temperature_miniumum (integer)

Lower limit of the target temperature. Could not be greater than maximum.
Setting minimum value above target value, will also change all target values to
minimum.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_maximum (integer)

Upper limit of the target temperature. Could not be less than minimum. Setting
maximum below target, will also change target values to maximum. Unit: °C with
one decimal number, multiplied by 10.

• hysteresis (integer)

Damper factor, which will protect from continous on/off switching when current
temperature is near target value.

Unit: °C with one decimal number, multiplied by 10.

• mode (string)

Current working mode. Available values: heating, cooling, off

• overheat_protection.active (boolean, read-only)

State of algorithm that disables heating if temperature is higher than target.

• overheat_protection.enabled (boolean)

Enables or disables overheat protection algorithm.

• overheat_protection.range (integer)

A value above target temperature that triggers overheat protection.

Unit: °C with one decimal number, multiplied by 10.

342 Virtual - Thermostat

• sigma_control.enabled (boolean)

Sigma smooth control state. If disabled, opening value of actuator will jump
between min/max instead of smooth control.

• sigma_control.range (integer)

Temperature range below target temperature that is used to scale opening from
100 (or maximum opening) - 0 (or minimum opening) percent when current room
temperature is equal to target temperature. Sigma causes actuators to
open/close in small, smooth steps instead of full open/full close.

Unit: °C with one decimal number, multiplied by 10.

• sigma_control.opening_factor (integer, read-only)

Current calculated valve opening factor in percent used to scale desired opening
between min and max.

• floor_control.enabled (boolean)

State of algorithm that controls floor heating processes.

• floor_control.lower_target_temperature (integer)

Lower limit of floor temperature fluctuation (due to material inertia). Could not
be greater than upper value.

Unit: °C with one decimal number, multiplied by 10.

• floor_control.upper_target_temperature (integer)

Upper limit of floor temperature fluctuation (due to material inertia). Could not
be less than lower value.

Unit: °C with one decimal number, multiplied by 10.

• floor_control.hysteresis (integer)

Damper factor, which will protect from continous on/off switching when current
temperature is near target value.

Unit: °C with one decimal number, multiplied by 10.

• floor_control.condition (string, read-only)

Floor control condition. Informs whether floor temperature is in min-max range
or not. Available values: optimal, overheated, underheated

• antifrost_protection (boolean)

State of algorithm that turns on heating if temperature drops under 6°C.

• opening_sensors_delay (integer)

Delay after which thermsotat will react when opening sensor detects window
openned.

Unit: seconds

• is_window_open (boolean, read-only))

Informs whether there is window opened.

343 Virtual - Thermostat

• confirm_time_mode (boolean)

Mainly for Mobile/Web App purposes. Indicates if time mode modal should be
displayed when changing thermostat temperature.

Commands
• set_target_temperature

Calls Thermostat to change constant or time_limited mode target temperature
to the desired value. If thermostat works in time_limited mode it will change
target temperature only, not affecting remaining_time . If thermostat works in
schedule mode it will change target temperature mode to constant .

Argument:
target temperature in 0.1°C (number)

• enable_schedule_mode

Changes thermostat target temperature mode to schedule . In this mode target
temperature is set based on schedule set by user. Command cannot be called to if
thermostat doesnt have has_schedule label!

• enable_constant_mode

Calls Thermostat to change mode and target temperature mode to constant .
While thermostat is already in constant mode, it will change mode
target_temperature only.

Unit: °C with one decimal number, multiplied by 10.

Argument:
target temperature in 0.1°C (number)

• enable_time_limited_mode

Calls Thermostat to change mode and target temperature mode to time_limited

for desired time. While thermostat is already in time_limited mode, it will
change remaining_time or/and target_temperature depending on payload. First
parameter is remaining_time , second is target_temperature .

Unit: minutes and °C with one decimal number, multiplied by 10.

Argument:
packed arguments (table):

◦ remaining time in minutes (number)
◦ target temperature in 0.1°C (number)

• disable_time_limited_mode

Calls Thermostat to disable time_limited and go back to previous target
temperature mode. When thermostat is not in time_limited mode, it will do

344 Virtual - Thermostat

nothing.

• set_mode

Calls Thermostat to change mode to one of heating , cooling , off .

Argument:
mode name (string)

Examples
Raise target temperature between 15:00 and 20:00

if dateTime:changed() then
if dateTime:getHours() == 15 and dateTime:getMinutes() == 0 then
virtual[1]:call("set_target_temperature", 220)

elseif dateTime:getHours() == 20 and dateTime:getMinutes() == 0 then
virtual[1]:call("set_target_temperature", 190)

end
end

Raise target temperature on saturday and lower on monday

if dateTime:getTimeOfDay() == 00 then
if dateTime:getWeekDayString() == "saturday" then
virtual[1]:call("set_target_temperature", 230)

elseif dateTime:getWeekDayString() == "monday" then
virtual[1]:call("set_target_temperature", 210)

end
end

Enable schedule work monday to friday and disable during weekends

if dateTime:getTimeOfDay() == 00 then
if dateTime:getWeekDayString() == "monday" then
virtual[1]:call("enable_schedule_mode")

elseif dateTime:getWeekDayString() == "saturday" then
virtual[1]:call("enable_constant_mode", 200)

end
end

Reconfigure thermostat when motion sensor triggers

if wtp[4]:changedValue("motion_detected") then
-- time limited to 2 hours, 23.5°C
virtual[1]:call("enable_time_limited_mode", {120, 235})

end

345 Virtual - Thermostat

Change thermostat modes based on temperature

local sensor_temperature = wtp[3]:getValue("temperature")

if sensor_temperature > 250 then
-- above 25°C, enable cooling
virtual[1]:call("set_mode", "cooling")

elseif sensor_temperature < 200 then
-- below 20°C, enable heating
virtual[1]:call("set_mode", "heating")

end

346 Virtual - Thermostat Output Group

Virtual - Thermostat Output Group
The virtual thermostat output group controls the output devices based on the
readings from the virtual thermostats eg. turning on and off gas boiler, pumps or
valves via associated relay or allowing heating by pellet boiler.

Currently only heating is supported.

The thermostat output group can be associated with: Thermostats (input devices),
relays (output for gas boiler, pump or valve), pellet boiler, heat pumps or two state
input sensor (switches Thermostats heating/cooling mode).

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

347 Virtual - Thermostat Output Group

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• enabled (boolean)

Current device state (enabled (true) / disabled (false)).

• state (boolean, read-only)

Current working state (active (true) / idle (false)).

• mode (string, read-only)

Current calculated working mode. Available values: heating, cooling

• propagation_delay (number)

Delays active state propagation for output devices eg. delays switching from off
to on for relays/pellet boiler when heat is requested. Useful for setup with gas
boiler (quick achieve of heating setpoint) and radiator actuators (long response,
up to several minutes) where boiler can go into alarm status when there is no
heat extraction. Unit: seconds.

Commands
• enable

Enables device.

• disable

Disables device.

• set_propagation_delay (number)

Sets desired propagation delay for outputs.

Argument:
delay in seconds (number)

Examples
Check when heat/cooling is requested

if virtual[55]:changedValue("state") then
if virtual[55]:getValue("mode") == "heating" then
if virtual[55]:getValue("state") then

print("HEAT IS REQUESTED")
else

print("COOLING IS REQUESTED")
end

else
print("ACTION NO LONGER NEEDED")

end
end

348 Virtual - Thermostat Output Group

Disable between 15:00 and 20:00

if dateTime:changed() then
if dateTime:getHours() == 15 and dateTime:getMinutes() == 0 then
virtual[1]:call("enable")

elseif dateTime:getHours() == 20 and dateTime:getMinutes() == 0 then
virtual[1]:call("disable")

end
end

349 Virtual - Relay Integrator

Virtual - Relay Integrator
The virtual relay intergrator keeps all associated relays in the same state. If one of
assigned relays changes state, integrator changes state of all associated relays to
new state.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

350 Virtual - Relay Integrator

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (boolean)

Current relays output state.

Examples
Turn on all assigned relays when motion sensor triggers

if wtp[3]:changedValue("motion_detected") then
virtual[5]:setValue("state", true)

end

351 Virtual - Blind Controller Integrator

Virtual - Blind Controller Integrator
The virtual blind controller intergrator allows setting the same target opening to all
associated blind controllers. Control logic is one-way - If one of assigned blind
controllers changes target opening, integrator will not affect target opening of the
rest associated blind controllers.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

352 Virtual - Blind Controller Integrator

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• last_set_target_opening (number, read-only)

Contains last set target opening via integrator.

• action_in_progress (boolean, read-only)

Indicates if control action requested via integrator is in progress.

Examples
Open all assigned blinds at sunrise and close at sunset

if event.type == "sunrise" then
virtual[3]:call("up")

elseif event.type == "sunset" then
virtual[3]:call("down")

end

Set all assigned blinds to half-open at noon

if dateTime:changed() then
if dateTime:getHours() == 12 and dateTime:getMinutes() == 0 then
virtual[3]:call("open", 50)

end
end

Catch actions starting and ending

if virtual[3]:changedValue("action_in_progress") then
if virtual[3]:getValue("action_in_progress") then
print("Somebody started action via integrator")

else
print("Integration action has eneded.")

end
end

353 Virtual - CustomDevice

Virtual - CustomDevice
Custom Device is a special type of device in which the user can design the layout of
the controls on the widget and in the options window, and then program their
behavior in Lua language. This functionality allows you to easily expand the system
with further integrations and functionalities. This requires knowledge of the Sinum
Lua development environment.

Custom Device lua code is a private extension (not available outside of the device
execution context) of the standard devices functionality. This means that in the
context of device lua code / execution context, you can use standard methods like
getValue , setValue , setValueAfter etc. referring to the self object e.g.
self:getValue("name") , self:setValue("name", "new_name") . See examples for
more info.

From the automation/scene context, the device is visible like the rest. The difference
is an additional method, getElement which allows you to refer to a specific control
by its name and get or set properties.

The names control and element are used interchangeably and represent the
predefined parts from which the user builds his device. Read Virtual -

CustomDevice - Controls chapter for more information.

Device and controls may be added, edited or removed via REST API or a web
application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
(excluding adding/removing controls and changing positions) using virtual
container eg.

virtual[6] gives you access to virtual device with ID 6. VIRTUAL devices have
global scope and they are visible in all executions contexts.

Methods
This is an extension of the methods available in standard devices.

• getElement(element_name)

Returns reference to control or nil if it doesnt exist.

Returns:
◦ (any) - depends on element type

Arguments:

◦ element_name (string) - name of element configured by user

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

354 Virtual - CustomDevice

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• enabled (boolean)

Current device state (enabled (true) / disabled (false)). When disabled, lua code
wont be executed.

Commands
• enable

Enables device.

• disable

Disables device.

355 Virtual - CustomDevice

User specific commands

There is possibility to add user commands to custom device, which can be called
from REST api or other lua scripts. All you need is to define callback handler for
commands and write its logic in Custom Device Code eg.

function CustomDevice:onCommand(command, arg)
if command == "my_command_1" then
print("You called first command without arg.")

else if command == "my_command_2_with_arg" then
print("You called second command with arg: " .. tostring(arg))

end
end

and use it in other scripts eg:

virtual[5]:call("my_command_1")

virtual[5]:call("my_command_2_with_arg", 77)

356 Virtual - CustomDevice - Lua code

Virtual - CustomDevice - Lua code
Custom device lua property (available only via REST api) is a place when you write
entire code for your custom device including all controls callbacks. When some
element refers to callback name it must exists in lua code.

Available callbacks

• onEvent

Executed when any event in system occurs. Allows user to react to other parts of
the system. Defining this callback in code is not neccessary if user doesn't want to
catch events not related to custom device. (see examples section for more details)

Arguments:

◦ event_object (object) - Current system event. See Events section for more
details about events

• onCommand

Executed when command call requested via REST API (see device commands
endpoints) or via other Lua scripts (see device commands call function
description in Devices section.). Allows user to handle custom defined commands
eg. to control multiple elements at once from automations or scenes. Defining
this callback in code is not neccessary if user doesn't want to have commands.
(see examples section for more details)

Arguments:

◦ command (string) - Name of command to handle
◦ arg (any) - Argument passed by user to command. Type of arg can be number,
string, boolean or nil (null)

357 Virtual - CustomDevice - Controls

Virtual - CustomDevice - Controls
Controls form the appearance and logical part of a custom device. They allow you to
change parameters, display their values and react to actions such as clicking a
button.

Each type of control has its own properties and the ability to attach a lua function
that will be executed when an specific event occurs.

Currently available controls:

• button - Button with text and/or icon that may react to a click

• progress_bar - A bar with a percentage value from 0% to 100% that can be
changed by the user (only from lua side)

• slider - A bar with a numerical value of any range and step, which can be
changed by the user from the Lua context and the widget/option context

• switcher - Element for switching values between true / false

• text - Text field that displays the value entered from the Lua context on the
widget / options

• combo_box - A user defined drop-down list, which can be change by user from the
Lua context and the widget/option context.

Methods
The methods are common to all types of controls.

• getValue(property_name)

Returns value of object property.

Returns:
◦ (any) - depends on property type

Arguments:

◦ property_name (string, required) - name of property

• setValue(property_name, property_value, stop_propagation)

Sets value for object property.

Returns:
◦ (userdata) - reference to element object for chained calls

Arguments:

◦ property_name (string, required) - name of property

◦ property_value (any, required) - property type dependant value which should
be set

◦ stop_propagation (boolean, optional) - defines whether futher callback
propagation should be stopped (= true) or not (= false / empty). In other
words, if = true, then associated callback (eg. onChange) won't be executed

358 Virtual - CustomDevice - Controls

after value change. This may help reducing callback propagation infinite loops
- see explanation below.

• call(command_name, arg)

Calls element to execute commmand.

Returns:
◦ (userdata) - reference to element object for chained calls

Arguments:

◦ command_name (string, required) - name of command available for element
◦ arg (any, optional) - argument for command

359 Virtual - CustomDevice - Controls - Text

Virtual - CustomDevice - Controls - Text
This element represents text field that displays the value entered from the Lua
context on the widget / options. It is possible to attach a Lua callback which will be
executed when text changes.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• type (string, read-only)

Element type description, based on role and functionality.

• name (string, read-only)

User defined name of element. Cannot contain special characters except _

• uuid (string, read-only)

Universal Unique Identifier of element used by frontend app to properly render
and position element.

• enabled (boolean)

Indicates if element is enabled/disabled. If element is disabled, user cannot
change its properties or call commands (will result in validation error)

• device_id (number, read-only)

ID of device from which the control comes from.

• value (string)

User defined text value. Max 32 characters. Value change will trigger on_change
callback.

• font_weight (string)

Font weight of displayed text. Available values: normal , bold .

• font_size (string)

Font size of displayed text. Available values: small , normal , large .

• on_change (string, read-only)

Name of method (function) from CustomDevice lua code which will be executed
on text value change. Should not contain CustomDevice: prefix, only name.

360 Virtual - CustomDevice - Controls - Text

Commands
Commands cannot be executed if control is not enabled (will result in validation
error).

• set_value

Sets new text value. Value change will trigger on_change callback.

Arguments:

◦ string

• set_font_weight

Sets new font weight. Available values: normal , bold .

Arguments:

◦ string

• set_font_size

Sets new font weight. Available values: small , normal , large .

Arguments:

◦ string

Lua Callback signature

• on_change

Executed on text value change. Takes new value and reference to element as
arguments.

Arguments:

◦ string

◦ element_reference

361 Virtual - CustomDevice - Controls - Button

Virtual - CustomDevice - Controls - Button
This element represents button with text and/or icon that may react to a click. It is
possible to attach a Lua callback which will be executed when press event happens.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• type (string, read-only)

Element type description, based on role and functionality.

• name (string, read-only)

User defined name of element. Cannot contain special characters except _

• uuid (string, read-only)

Universal Unique Identifier of element used by frontend app to properly render
and position element.

• enabled (boolean)

Indicates if element is enabled/disabled. If element is disabled, user cannot
change its properties or call commands (will result in validation error)

• device_id (number, read-only)

ID of device from which the control comes from.

• text (string)

User defined text value. Max 32 characters.

• icon (string)

User defined icon value. Max 64 characters.

• on_press (string, read-only)

Name of method (function) from CustomDevice lua code which will be executed
on press event. Should not contain CustomDevice: prefix, only name.

Commands
Commands cannot be executed if control is not enabled (will result in validation
error).

• press

Emits press event and executes callback if attached.

362 Virtual - CustomDevice - Controls - Button

• set_text

Sets new text value.

Arguments:

◦ string

• set_icon

Sets new icon value.

Arguments:

◦ string

Lua Callback signature

• on_press

Executed on press event. Takes reference to element as argument.

Arguments:

◦ element_reference

363 Virtual - CustomDevice - Controls - Switcher

Virtual - CustomDevice - Controls - Switcher
This element represents switchable value between true / false. It is possible to
attach a Lua callback which will be executed when value changes.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• type (string, read-only)

Element type description, based on role and functionality.

• name (string, read-only)

User defined name of element. Cannot contain special characters except _

• uuid (string, read-only)

Universal Unique Identifier of element used by frontend app to properly render
and position element.

• enabled (boolean)

Indicates if element is enabled/disabled. If element is disabled, user cannot
change its properties or call commands (will result in validation error)

• device_id (number, read-only)

ID of device from which the control comes from.

• value (boolean)

User defined value. Value change will trigger on_change callback.

• on_change (string, read-only)

Name of method (function) from CustomDevice lua code which will be executed
on value change. Should not contain CustomDevice: prefix, only name.

Commands
Commands cannot be executed if control is not enabled (will result in validation
error).

• set_value

Sets new value. Value change will trigger on_change callback.

Arguments:

◦ boolean

364 Virtual - CustomDevice - Controls - Switcher

• toggle

Sets value to opposite. Value change will trigger on_change callback.

Lua Callback signature

• on_change

Executed on value change. Takes new value and reference to element as
arguments.

Arguments:
◦ changed (boolean)
◦ element reference (userdata)

365 Virtual - CustomDevice - Controls - Progress Bar

Virtual - CustomDevice - Controls - Progress Bar
This element represents bar with a percentage value from 0% to 100% that can be
changed by the user (only from lua side). It is possible to attach a Lua callback
which will be executed when value changes.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• type (string, read-only)

Element type description, based on role and functionality.

• name (string, read-only)

User defined name of element. Cannot contain special characters except _

• uuid (string, read-only)

Universal Unique Identifier of element used by frontend app to properly render
and position element.

• enabled (boolean)

Indicates if element is enabled/disabled. If element is disabled, user cannot
change its properties or call commands (will result in validation error)

• device_id (number, read-only)

ID of device from which the control comes from.

• value (number)

User defined value between 0 - 100. Value change will trigger on_change
callback.

• on_change (string, read-only)

Name of method (function) from CustomDevice lua code which will be executed
on value change. Should not contain CustomDevice: prefix, only name.

Commands
Commands cannot be executed if control is not enabled (will result in validation
error).

• set_value

Sets new value. Value change will trigger on_change callback.

Arguments:

366 Virtual - CustomDevice - Controls - Progress Bar

◦ number

• increment

Adds 1% to value. Value change will trigger on_change callback.

• decrement

Substracts 1% from value. Value change will trigger on_change callback.

Lua Callback signature

• on_change

Executed on value change. Takes new value and reference to element as
arguments.

Arguments:
◦ new value (number)
◦ element reference (userdata)

367 Virtual - CustomDevice - Controls - Slider

Virtual - CustomDevice - Controls - Slider
This element represents bar with a numerical value of any range and step, which can
be changed by the user from the Lua context and the widget/option context. It is
possible to attach a Lua callback which will be executed when value changes.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• type (string, read-only)

Element type description, based on role and functionality.

• name (string, read-only)

User defined name of element. Cannot contain special characters except _

• uuid (string, read-only)

Universal Unique Identifier of element used by frontend app to properly render
and position element.

• enabled (boolean)

Indicates if element is enabled/disabled. If element is disabled, user cannot
change its properties or call commands (will result in validation error)

• device_id (number, read-only)

ID of device from which the control comes from.

• minimum (number, read-only)

User defined minimum value.

• maximum (number, read-only)

User defined maximum value.

• value (number)

User defined value between minimum and maximum . Value change will trigger
on_change callback.

• step (number)

User defined step for value when using GUI slider or increment / decrement
commands.

• on_change (string, read-only)

368 Virtual - CustomDevice - Controls - Slider

Name of method (function) from CustomDevice lua code which will be executed
on value change. Should not contain CustomDevice: prefix, only name.

Commands
Commands cannot be executed if control is not enabled (will result in validation
error).

• set_value

Sets new value. Value change will trigger on_change callback.

Arguments:

◦ number

• increment

Adds step to value. Value change will trigger on_change callback.

• decrement

Substracts step from value. Value change will trigger on_change callback.

Lua Callback signature

• on_change

Executed on value change. Takes new value and reference to element as
arguments.

Arguments:
◦ new value (number)
◦ element reference (userdata)

369 Virtual - CustomDevice - Controls - ComboBox

Virtual - CustomDevice - Controls - ComboBox
This element represents a drop-down list that displays the value selected from the
Lua context or the widget / options. It is possible to attach a Lua callback which will
be executed when selected value changes. Available options can be changed from
the Lua.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• type (string, read-only)

Element type description, based on role and functionality.

• name (string, read-only)

User defined name of element. Cannot contain special characters except _

• uuid (string, read-only)

Universal Unique Identifier of element used by frontend app to properly render
and position element.

• enabled (boolean)

Indicates if element is enabled/disabled. If element is disabled, user cannot
change its properties or call commands (will result in validation error)

• device_id (number, read-only)

ID of device from which the control comes from.

• value (string)

Selected value. Has to be one of the available values stored in options . Value
change will trigger on_change callback.

• options (string, read-only)

JSON formatted string with list of objects with fields label and value
representing all available options in combo box.

• on_change (string, read-only)

Name of method (function) from CustomDevice lua code which will be executed
on selected value change. Should not contain CustomDevice: prefix, only name.

370 Virtual - CustomDevice - Controls - ComboBox

Commands
Commands cannot be executed if control is not enabled (will result in validation
error).

• set_value

Sets new selected value. Value change will trigger on_change callback. Has to be
one of value strings stored in options .

Arguments:

◦ string

• add_option

Adds new available value to options . Available values has to be unique.

Arguments:

◦ array of size 2 where first field is label and second is value .

• remove_option_by_label

Removes one of the available option from options where label is equal to
passed argument. If currently selected value is removed value is changed to
empty string and on_change callback is triggered.

Arguments:

◦ string

• remove_option_by_value

Removes one of the available option from options where value is equal to
passed argument. If currently selected value is removed value is changed to
empty string and on_change callback is triggered.

Arguments:

◦ string

• clear_options

Removes all available values from options . If any value is selected value is
changed to empty string and on_change callback is triggered.

Lua Callback signature

• on_change

Executed on selected value change. Takes new value and reference to element as
arguments.

Arguments:

◦ string

371 Virtual - CustomDevice - Controls - ComboBox

◦ element_reference

Examples
Using callbacks

Assuming the user created a device with one of each type of control e.g.:

(Example device structure)

{
"elements": [
{

"type": "text",
"name": "my_text_field",
[...]
"on_change": "onMyTextFieldChange"

},
{

"type": "button",
"name": "my_button",
[...]
"on_press": "onMyButtonPress"

},
{

"type": "slider",
"name": "my_slider",
[...]
"on_change": "onMySliderValueChange"

},
{

"type": "switcher",
"name": "my_switcher",
[...]
"on_change": "onMySwitcherValueChange"

},
{

"type": "progress_bar",
"name": "my_progress_bar",
[...]
"on_change": "onMyProgressValueChange"

},
{

"type": "combo_box",
"name": "my_combo_box",
[...]
"on_change": "onMyComboBoxValueChange"

},
]

}

(Custom Device logic)

-- on_change callback handler for text
function CustomDevice:onMyTextFieldChange(newValue, element)

-- print new value
print("Text changed in element " .. element:getValue("name") .. " to " ..

newValue)

-- set device name to this value
self:setValue("name", newValue)

372 Virtual - CustomDevice - Controls - ComboBox

-- set button text to this value (other control from this device)
self:getElement("my_button"):setValue("text", newValue)

end

-- on_press callback handler for button
function CustomDevice:onMyButtonPress(element)

-- print info
print("Somebody pressed on " .. element:getValue("name"))

-- toggle switch (other control from this device)
self:getElement("my_switcher"):call("toggle")

-- activate scene after 5 seconds
scene[5]:activateAfter(5)

end

-- on_change callback handler for slider
function CustomDevice:onMySliderValueChange(newValue, element)

-- print new value
print("Value changed in element " .. element:getValue("name") .. " to " ..

newValue)

-- send this slider value as json to http server
local body = {

value = newValue,
device_name = self:getValue("name"),
device_id = element:getValue("device_id")

}

http_client[1]:POST("https://custom.server.com")
:header("Authorization", "Tk63TBJv5hhdnu5UN_F2dgj")
:contentType("application/json")
:body(JSON:encode(body))
:send()

end

-- on_change callback handler for switcher
function CustomDevice:onMySwitcherValueChange(newValue, element)

-- print new value
print("Value changed in element " .. element:getValue("name") .. " to " ..

newValue)

-- control relays based on new value
wtp[5]:setValue("state", newValue)

if newValue then
sbus[9]:call("turn_on")

else
sbus[9]:call("turn_off")

end
end

-- on_change callback handler for progress bar
function CustomDevice:onMyProgressValueChange(newValue, element)

-- print new value
print("Value changed in element " .. element:getValue("name") .. " to " ..

newValue)

-- publish to mqtt
mqtt_client[4]:publish("progress_bar/value", tostring(newValue), 0, false)

end

-- onEvent callback, can catch events that occur in system
function CustomDevice:onEvent(event)

-- change switcher value when device state changes

373 Virtual - CustomDevice - Controls - ComboBox

if wtp[3]:changedValue("state") then
self:getElement("my_switcher"):call("set_value", wtp[3]:getValue("state"))

end

-- Set all switchers to off when sunrise
if event.type == "sunrise" then
self:getElement("my_switcher"):call("set_value", false)
self:getElement("my_switcher_2"):call("set_value", false)

end

-- set the text in text field with http client response
if event.type == "http_client_response" then
-- check if it is client we are interested in
if http_client[4]:hasResponse() then

local decoded = JSON:decode(http_client[4]:response())
self:getElement("my_text_field"):call("set_value", decoded.data)

end
end

end

-- onCommand callback, can catch custom commands executed
function CustomDevice:onCommand(command, arg)

if command == "modify_elements" then
print(string.format("Got command %s with argument of type %s.", command,

type(arg)))
self:getElement("my_text_field"):call("set_value", command)
self:getElement("my_switcher"):call("set_value", false)
self:getElement("my_switcher_2"):call("set_value", false)
scene[5]:activateAfter(5)

else
print(string.format("Command %s not implemented!", command))

end

end

Change element values/call commands from scene or automation

virtual[7]:getElement("my_button"):call("press")
virtual[7]:getElement("my_slider"):setValue("value", 55)

if virtual[7]:getElement("my_progress"):getValue("value") > 95 then
print("Its almost ready!")

end

-- this is custom command defined, see onCommand function example above
virtual[7]:call("modify_elements")
virtual[7]:call("modify_elements", "my-string-val")
virtual[7]:call("modifiy_elements", false)

Call custom commands from scene or automation

-- this is custom command defined, see onCommand function example above
virtual[7]:call("modify_elements")
virtual[7]:call("modify_elements", "my-string-val")
virtual[7]:call("modifiy_elements", false)

-- this will print "Command non_existing_weird_command not implemented!
virtual[7]:call("non_existing_weird_command", 123.77)

374 Virtual - CustomDevice - Controls - ComboBox

Infinite event loops / callback propagation stop

In general, this feature allows to stop custom device element callback propagation
and prevent from infinite callback loops.

Consider following case:

Changing state of switcher sends mqtt message to remote device. Changing state of
remote device sends mqtt message to custom device switcher.

local tasmotaName = "tasmota_D9360D"

function CustomDevice:onChange(newValue, element)
-- send message to remote device
self:getElement("text"):setValue("value", utils:ternary(newValue, "On",

"Off"))
mqtt_client[4]:publish(
"cmnd/" .. tasmotaName .. "/POWER",
utils:ternary(newValue, "ON", "OFF"), 0, false)

end

function CustomDevice:onEvent(event)
-- message from remote device received
mqtt_client[4]:onMessage(function(topic, payload, qos, retain, dup)
-- this is the status when some one toggled it remotely
-- or response for toggle from publish above (cannot distinguish)
if topic == "stat/" .. tasmotaName .. "/POWER" then

self:getElement("switch"):setValue("value", payload == "ON")
end

end)
end

By default, every change of Custom Device element state will emit event and if there
is callback associated it will be executed.

When mqtt latency happens and you toggle switcher 2/3 times from REST API / Web
or Mobile app in a row, you may end up with infline loops. When you send ON
command (#1), from mqtt you get previous OFF response, this sets switcher to OFF
and publishes message, again you get ON payload as response (from message #1)
and have inflinite toggling loop. To prevent this situation, you may stop element
event propagation in mqtt response when third argument of setValue (or call) for
this element is set to true :

This is fixed case, note the third argument in mqtt onMessage for element setValue
function.

local tasmotaName = "tasmota_D9360D"

function CustomDevice:onChange(newValue, element)
self:getElement("text"):setValue("value", utils:ternary(newValue, "On",

"Off"))
mqtt_client[4]:publish(
"cmnd/" .. tasmotaName .. "/POWER",
utils:ternary(newValue, "ON", "OFF"),
0,
false)

end

function CustomDevice:onEvent(event)
mqtt_client[4]:onMessage(function(topic, payload, qos, retain, dup)

375 Virtual - CustomDevice - Controls - ComboBox

-- this is the status when some one toggled it remotely
-- or response for toggle from publish above (cannot distinguish)
if topic == "stat/" .. tasmotaName .. "/POWER"
then

self:getElement("switch"):setValue("value", payload == "ON", true)
end

end)
end

Now the received response will still set element value but won't execute onChange
callback.

376 Virtual - Heat Pump Manager

Virtual - Heat Pump Manager
The virtual heat pump manager controls the associated devices based on the
readings from the sensors and configured target temperatures.

Manager has four work modes: heating , cooling , automatic and fireplace . By
default works in heating mode.

• In heating mode computes state of heat demand and controls remote heat pump.
• In cooling mode computes state of cool demand and controls remote heat pump.
• In automatic mode computes state of heat and cool demand and controls remote
heat pump (switches between work modes).

• In fireplace mode forces remote heat pump to be in never ending heat demand.

At least one temperature sensor is required.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

377 Virtual - Heat Pump Manager

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• temperature (number, read-only)

Temperature value forwarded from associated sensor or 0 if no sensor associated
or computed average temperature if more than one sensor associated Unit: °C
with one decimal number, multiplied by 10.

• enabled (boolean)

Enable or disable device.

• work_mode (string)

Current work mode algorithm. Available values: heating, cooling, automatic,
fireplace. Default: heating

• state (boolean, read-only)

Current working state (active (true) / idle (false)).

• target_temperature.current (number, read-only)

Current target temperature. This is read-only value. Unit: °C with one decimal
number, multiplied by 10.

• target_temperature.heating (number)

Target temperature for heating work mode Unit: °C with one decimal number,
multiplied by 10.

• target_temperature.cooling (number)

Target temperature for cooling work mode Unit: °C with one decimal number,
multiplied by 10.

• target_temperature.automatic (number)

Target temperature for automatic work mode Unit: °C with one decimal number,
multiplied by 10.

• hysteresis.heating (number)

Damper factor, which will protect from continous on/off switching when current
temperature is near target value in heating work mode. Unit: °C with one
decimal number, multiplied by 10.

• hysteresis.cooling (number)

378 Virtual - Heat Pump Manager

Damper factor, which will protect from continous on/off switching when current
temperature is near target value in cooling work mode. Unit: °C with one decimal
number, multiplied by 10.

• hysteresis.automatic (number)

Damper factor, which will protect from continous on/off and heat pump work
mode switching when current temperature is near target value in automatic work
mode. Unit: °C with one decimal number, multiplied by 10.

• dhw_control.enabled (boolean)

Enable or disable domestic hot water control.

• dhw_control.temperature (number, read-only)

Temperature value forwarded from DHW device built-in sensor Unit: °C with one
decimal number, multiplied by 10.

• dhw_control.target_temperature (number)

Target temperature for DHW control Unit: °C with one decimal number,
multiplied by 10.

• dhw_control.hysteresis (number)

Damper factor, which will protect from continous on/off switching when current
temperature is near target value. Unit: °C with one decimal number, multiplied
by 10.

• dhw_control.state (boolean, read-only)

Current working state of DHW control (Working/Idle).

• electric_heater_active (boolean, read-only)

Indicates electric heater active state in associated heat pump.

Commands
• enable

Calls Heat Pump Manager to enable control.

• disable

Calls Heat Pump Manager to disable control.

• toggle

Calls Heat Pump Manager to toggle control.

• set_heating_target_temperature

Calls Heat Pump Manager to change heating work mode target temperature to
the desired value.

Argument:
target temperature in 0.1°C (number)

379 Virtual - Heat Pump Manager

• set_cooling_target_temperature

Calls Heat Pump Manager to change cooling work mode target temperature to
the desired value.

Argument:
cooling target in 0.1°C (number)

• set_automatic_target_temperature

Calls Heat Pump Manager to change automatic work mode target temperature
to the desired value.

Argument:
auto mode target in 0.1°C (number)

• set_dhw_target_temperature

Calls Heat Pump Manager to change DHW control target temperature to the
desired value.

Argument:
DHW target temperature in 0.1°C (number)

Examples
Raise heating target temperature between 15:00 and 20:00

if dateTime:changed() then
if dateTime:getHours() == 15 and dateTime:getMinutes() == 0 then
virtual[1]:call("set_heating_target_temperature", 220)

elseif dateTime:getHours() == 20 and dateTime:getMinutes() == 0 then
virtual[1]:call("set_heating_target_temperature", 190)

end
end

Raise cooling target temperature on saturday and lower it on monday

if dateTime:getTimeOfDay() == 00 then
if dateTime:getWeekDayString() == "saturday" then
virtual[1]:call("set_cooling_target_temperature", 230)

elseif dateTime:getWeekDayString() == "monday" then
virtual[1]:call("set_cooling_target_temperature", 210)

end
end

Disable manager between June and August

if dateTime:changed() then
if dateTime:getMonth() >= 6 and dateTime:getMonth() <= 8 then
virtual[1]:setValue("enabled", false)
virtual[1]:setValue("dhw_control.enabled", false)

else
virtual[1]:setValue("enabled", true)

380 Virtual - Heat Pump Manager

virtual[1]:setValue("dhw_control.enabled", true)
end

end

381 Virtual - Gate

Virtual - Gate
The virtual gate controls the sliding gate, swing gate or garage gate depending on
configured variant, using associated devices:

• full_open_close_output , commands the gate controller device to fully open or
close gate depe1nding on current state by sending on/off impulse for 500ms.

• partial_open_close_output , commands the gate controller device to partially
open or close gate depending on current state by sending on/off impulse for
500ms.

• close_status_sensor , this is feedback device, detects physical gate state
between open (open circuit = false) / closed (closed circuit = true)

• trigger_sensor , this device can be used to catch external signal (eg. wall switch
impulse, or RC remote output impulse) and trigger full_move action

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device. Can be either swing_gate ,
sliding_gate or garage_gate . Can be set only once, when creating device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

382 Virtual - Gate

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (string, read-only)

Current state of gate: no_move, moving, closed, closing, open, opening. No move
and moving states are present only when there is no close status sensor
associated, as device cannot determine physical state of the gate.

• full_move_duration (number)

Maximum time in seconds required to fully close or fully open (select greater) the
gate. Valid range: [1 - 120] seconds.

• partial_move_duration (number)

Maximum time in seconds required to partial close or partial open (select greater)
the gate. Valid range: [1 - full_move_duration] seconds.

Commands
• full_move

Commands the gate controller to do the full move action. Should be used when no
close_status_sensor is associated or you want to just do the counter direction
move according to current state .

• partial_move

Commands the gate controller to do the partial move action. Should be used
when no close_status_sensor is associated or you want to just do the counter
direction move according to current state . This command requires the
partial_open_close_output to be associated!

• full_open

Commands the gate controller to do the full open action. This command requires
the close_status_sensor to be associated!

• partial_open

Commands the gate controller to do the partial open action. This command
requires the close_status_sensor and partial_open_close_output to be
associated!

383 Virtual - Gate

• close

Commands the gate controller to do the close action. This command requires the
close_status_sensor to be associated!

Examples
Open gates when smoke sensor triggers

if wtp[5]:changedValue("smoke_detected") and wtp[5]:getValue("smoke_detected")
then

print("Sensor detected smoke!!! Opening gates!")

virtual[5]:call("full_open")
virtual[6]:call("partial_open")

end

Close a gate 10 minutes after opening it

NOTE: This requires adding a timer via API or WebApp with minute unit.

if virtual[10]:changedValue("state") then
if virtual[10]:getValue("state") == "open" then
timer[3]:start(10)

else
timer[3]:stop()

end
end

if timer[3]:isElapsed() then
virtual[10]:call("close")

end

384 Virtual - Wicket

Virtual - Wicket
The virtual wicket controls the electric strike of wicket or gate, using associated
devices:

• electric_strike_output , controls the electric strike locking and unlocking
• close_status_sensor , this is feedback device, detects physical wicket state
between open (open circuit = false) / closed (closed circuit = true)

• trigger_sensor , this device can be used to catch external signal (eg. wall switch
impulse, or RC remote output impulse) and trigger unlock action

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device. Can be either swing_gate ,
sliding_gate or garage_gate . Can be set only once, when creating device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

385 Virtual - Wicket

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• state (string, read-only)

Current state of wicket: locked, unlocked, closed, open. Open states is present
only when there is close status sensor associated, as device can determine
physical state of the wicket.

• unlock_duration (number)

Time in seconds of electric strike output being active (buzzing). Valid range: [1 -
45] seconds.

Commands
• lock

Locks (turns off) electric strike if its already unlocked.

• unlock

Unlocks (turns on) electric strike if its already locked.

Examples
Unlock wicket when smoke sensor detects smoke

if wtp[5]:changedValue("smoke_detected") and wtp[5]:getValue("smoke_detected")
then

print("Sensor detected smoke!!! Opening gates!")

virtual[5]:call("unlock")
end

386 SBUS - AnalogInput

SBUS - AnalogInput
Analog input sensor representation. Measures value from analog input and sends it
to central unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

387 SBUS - AnalogInput

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (integer, read-only)

Unique network address.

• endpoint (integer, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• raw_value (integer, read-only)

Raw value read from analog input.

• value (double/real, read-only)

Value from analog input after formula calculation or raw value when no formula
specified.

• formula (string)

Formula used to calculate value. Refering to object you can get data you need to
calculate, for example get raw_value from object: object.raw_value .

Should contain only calculations returning number. Should not contain any
condition statements, loops and more complicated code.

Example: object.raw_value * 2 + math.sqrt(object.raw_value)

• unit (string)

Value unit used for statistics.

Example: mV

388 SBUS - Button

SBUS - Button
Button customizable in application. Every button action can be assigned different
action. For example:

• Turn on first light when clicked once
• Turn on second light when clicked twice
• Turn off all lights when hold 3 seconds
Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

389 SBUS - Button

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• action (string, read-only)

Last action performed by user.

Example: button_1_clicked_10_times , button_1_hold_started ,
button_1_held_3_seconds

Examples
Turn on lights when button clicked once

local button = sbus[9]
local lights = { wtp[2], wtp[3], wtp[4] }

if (button:changedValue("action")
and button:getValue("action") == "button_1_clicked_1_times")
then

utils.table:forEach(lights, function (light) light:call("turn_on") end)
end

390 SBUS - Button

Close blinds when button held for 3 seconds

local button = sbus[9]
local blinds = {wtp[5], wtp[6], wtp[7]}

if (button:changedValue("action")
and button:getValue("action") == "button_1_held_3_seconds")

then
utils.table:forEach(blinds, function (blind) blind:call("down") end)

end

391 SBUS - CO2Sensor

SBUS - CO2Sensor
Battery powered CO2 sensor. Measures CO2 concentration in the air and sends
measurement to central unit.

Sensors measure value only every few minutes to save battery.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to wireless device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

392 SBUS - CO2Sensor

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• co2 (number, read-only)

Sensed CO2 value. Unit: PPM.

393 SBUS - Dimmer

SBUS - Dimmer
Device that controlls light intensity of output LED.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

394 SBUS - Dimmer

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state (boolean)

State of the output. On/Off.

• target_level (number)

Desired light intensity level on which device is set or level on which device will be
set when turned on. (depending on state) Unit: %.

Commands
• turn_on

Turns on output.

• turn_off

Turns off output.

• toggle

Changes state to opposite.

• set_level

Set light intensity level to desired level smoothly during given time.

Argument:
packed arguments (table):

◦ light intensity in 1% (number):

395 SBUS - Dimmer

• minumum: 0
• maximum: 100

◦ transition time in 0.1s (number):

• minimum: 1 (100 ms)
• maximum: 6000 (10 minutes)
• parameter is optional (500 ms default)

• stop

Calls Dimmer to stop current level moving action. Does nothing if no action is in
progress.

Examples
Turn on light at 19:00 and turn off at 21:00

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
sbus[4]:call("turn_on")

elseif dateTime:getHours() == 21 and dateTime:getMinutes() == 0 then
sbus[4]:call("turn_off")

end
end

Set the light intensity to 75% during 2 minutes

sbus[4]:call("set_level", {75, 1200})

Dim or brighten lights while button is pressed (simple version)

Solution Drawback: will always take constant time to move from 0%->100%,
50%->100%, 10%->0% etc

local dimmer = sbus[4]
local button = sbus[98]

if button:changedValue("action") then

local action = button:getValue("action")
local fadeTime = 50 -- 5s / 5000ms

if action == "button_1_hold_started"
then
-- start moving to 100% from current target level
dimmer:call("set_level", {100, fadeTime})

elseif action == "button_2_hold_started"
then
-- start moving to 0% from current target level
dimmer:call("set_level", {0, fadeTime})

elseif action:find("button_1_held_") ~= nil or action:find("button_2_held_")
then
-- stop current moving action
dimmer:call("stop")

396 SBUS - Dimmer

end

end

Dim or brighten lights while button is pressed (advanced version)

Note: will adjust move time regarding current to target level difference

-- this function will compute required dimming time (adjusted to current level)
local function computeMoveParameters(currentValue, desiredValue, fullFadeTime)

-- calculate diff between current and desired level
local diff = math.abs(desiredValue - currentValue)

-- calculate how long move will take for this diff
local reqTime = math.utils:scale(0, 100, 0, fullFadeTime, diff)

-- clamping / rounding
return {desiredValue, math.floor(math.utils:clamp(0, fullFadeTime, reqTime))}

end

-- the actual dimming action
local dimmer = sbus[4]
local button = sbus[98]

if button:changedValue("action") then

local action = button:getValue("action")
local fadeTime = 50 -- 5s / 5000ms

if action == "button_1_hold_started"
then
-- start moving to 100% from current target
dimmer:call(

"set_level",
computeMoveParameters(dimmer:getValue("target_level"), 100, fadeTime))

elseif action == "button_2_hold_started"
then
-- start moving to 0% from current target level
dimmer:call(

"set_level",
computeMoveParameters(dimmer:getValue("target_level"), 0, fadeTime))

elseif action:find("button_1_held_") ~= nil or action:find("button_2_held_")
then
-- stop current moving action
dimmer:call("stop")

end
end

397 SBUS - HumiditySensor

SBUS - HumiditySensor
Humidity sensor. Measures humidity and sends measurement to central unit. Can be
assigned to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

398 SBUS - HumiditySensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• humidity (number, read-only)

Sensed humidity value.

Unit: rH% with one decimal number, multiplied by 10.

399 SBUS - IAQSensor

SBUS - IAQSensor
Battery powered Index of Air Quality sensor. Calculates Air Quality Index based on
various measures like CO2 or particles level and relative humidity. Sensors measure
values only every few minutes to save battery.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to wireless device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

400 SBUS - IAQSensor

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (integer, read-only)

Unique network address.

• endpoint (integer, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• iaq (integer, read-only)

Calculated Index of Air Quality.

• iaq_accuracy (string, read-only)

Index of Air Quality calculation accuracy. One of: unreliable , low , medium ,
high .

value meaning

unreliable The sensor is not yet stabilized or in a run-in status

low Calibration required and will be soon started

medium Calibration on-going

high Calibration is done, now IAQ estimate achieves best performance

• air_quality (string, read-only)

Descriptive name for air quality.

401 SBUS - IAQSensor

raw description

≤ 20 very_good

21 - 50 good

51 - 100 moderate

101 - 150 poor

151 - 200 unhealthy

201 - 300 very_unhealthy

301 - 500 hazardous

> 500 extreme

402 SBUS - LightSensor

SBUS - LightSensor
Light sensor measures light illuminance in lux and sends measurement to central
unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to wireless device with ID 6.

WTP devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

403 SBUS - LightSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• illuminance (number, read-only)

Sensed light illuminance value.

Unit: lx.

404 SBUS - MotionSensor

SBUS - MotionSensor
Motion sensor based on custom configuration checks whether motion was detected.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

405 SBUS - MotionSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• enabled (boolean)

Enable or disable sensor. eg. If you want sense only at night time, you can setup
automation to enable/disable sensor.

• blind_duration (number)

Duration of sensor being off after detecting motion.

Unit: seconds.

• pulses_threshold (number)

Sensitivity factor. How many pulses from sensor are needed to treat action as
motion. The higher the value, the sensitivity decreases.

• pulses_window (number)

Sensitivity factor. Maximum time window in which pulses_threshold must occur
to treat action as motion. The higher the value, the sensitivity increases.

Unit: seconds.

• motion_detected (boolean, read-only)

Holds latest motion detection state. Remains true on motion detection and false
when blind_duration time elapses.

This parameter doesn't emit event when switch from true to false happens. If you
need to observe such action, you need to use time_since_motion parameter.

406 SBUS - MotionSensor

• time_since_motion (number, read-only)

Time since last motion detected. Value of -1 means there wasn't any motion since
last system startup.

Unit: seconds.

Commands
• enable

Enables motion detector.

• disable

Disables motion detection.

• add_time_since_motion_event

Adds additional emitting time_since_motion event in seconds passed in
argument.

Argument:
event reemission delay in seconds (number)

Examples
Catching motion events

if sbus[4]:changedValue("motion_detected") then
print("someone is moving aroung!")

end

if sbus[4]:changedValue("time_since_motion") and
sbus[4]:getValue("time_since_motion") == 0

then
print("someone is moving aroung!")

end

Delayed action

if dateTime:changed() then
sbus[4]:call("add_time_since_motion_event", 30)

end

if sbus[4]:changedValue("time_since_motion") and
sbus[4]:getValue("time_since_motion") == 30

then
print("someone was here 30 seconds ago")

end

407 SBUS - MotionSensor

Enable motion detection at sunset and disable it at sunrise

if event.type == "sunrise" then
sbus[3]:call("disable")

elseif event.type == "sunset" then
sbus[3]:call("enable")

end

Enable a light for 5 minutes on motion detection

if sbus[4]:changedValue("motion_detected") then
sbus[60]:setValue("state", true)
sbus[60]:setValueAfter("state", false, 5 * 60)

end

Reconfigure thermostat when motion detected

if sbus[4]:changedValue("motion_detected") then
-- time limited to 2 hours, temperature 23.5°C
virtual[1]:call("enable_time_limited_mode", {120, 235})

end

408 SBUS - PressureSensor

SBUS - PressureSensor
Pressure senosr measures pressure and sends measurement to central unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to wireless device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

409 SBUS - PressureSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• pressure (number, read-only)

Sensed pressure value.

Unit: hPa with one decimal number, multiplied by 10.

410 SBUS - Relay

SBUS - Relay
Execution module that changes state depending on the control signal. Relay can be
assigned to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

411 SBUS - Relay

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state (boolean)

State of the output. On/Off.

• timeout (number)

Protection functionality, that will set device state to off if there are
communication problems.

Unit: minutes.

• timeout_enabled (boolean)

Parameter that indicates if timeout functionality is enabled.

• inverted (boolean)

Indicates if should invert physical state of relay compared to represented state in
application.

Commands
• turn_on

Turns on relay output.

• turn_off

Turns off relay output.

• toggle

Changes relay output to opposite.

412 SBUS - Relay

Examples
Turn on relay between 19:00 and 21:00

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
sbus[4]:call("turn_on")

elseif dateTime:getHours() == 21 and dateTime:getMinutes() == 0 then
sbus[4]:call("turn_off")

end
end

413 SBUS - RGB Controller

SBUS - RGB Controller
Device that controlls color and light intensity of output LED.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

414 SBUS - RGB Controller

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state (boolean)

State of the output. On/Off.

• brightness (number, read-only)

Desired light intensity level on which device is set or level on which device will be
set when turned on. (depending on state) Unit: %.

• led_color (string, read-only)

HTML/Hex RGB color that device will set on its output led strip.

• white_temperature (number, read-only)

White temperature that device will set on its output led strip.

Unit: Kelvins

• color_mode (string, read-only)

Color mode that device is set on. One of: rgb , temperature , animation .

• led_strip_type (string)

Led strip type that is connected with device. One of: rgb , rgbw , rgbww .

• white_temperature_correction (number)

White color temperature correction. Applies when led_strip_type set to rgbw.

415 SBUS - RGB Controller

• cool_white_temperature_correction (number)

Cool white color temperature correction. Applies when led_strip_type set to
rgbww.

• warm_white_temperature_correction (number)

Warm white color temperature correction. Applies when led_strip_type set to
rgbww.

• active_animation (number, read-only)

Active animation id if animation was activated. Null value when no animation
active.

Commands
• turn_on

Turns on output.

• turn_off

Turns off output.

• toggle

Changes state to opposite.

• set_brightness

Sets light intensity level to desired level smoothly during given time.

Argument:
packed arguments (table):

◦ light intensity in % (number):

• minumum: 1
• maximum: 100

◦ transition time in 0.1s (number):

• minimum: 1 (100 ms)
• maximum: 6000 (10 minutes)
• parameter is optional (500 ms default)

• set_color

Sets device output to requested color in RGB mode during requested period of
time. Set color_mode to rgb .

Argument:
packed arguments (table)

◦ HTML/Hex RGB color representation (string) * example: #88fb1c

◦ transition time in 0.1s (number)

• minimum: 1 (100 ms)
• maximum: 6000 (10 minutes)
• parameter is optional (500 ms default)

416 SBUS - RGB Controller

• set_temperature

Sets device output to requested white temperature during requested period of
time. Set color_mode to temperature .

Argument:
packed arguments (table):

◦ color temperature (number):

• minumum: 1000
• maximum: 40000
• unit: Kelvin

◦ transition time (number):

• minimum: 1 (100 ms)
• maximum: 6000 (10 minutes)
• unit: 100ms
• parameter is optional (500 ms default)

• activate_animation

Activate animation with specified id.

Arguments:
packed arguments (table):

◦ id - ID of animation that will be activated (number)

• stop_animation

Stops active animation and call device to return to previous color_mode .

Examples
Turn on light to specific color at 7:00 and turn off at 8:00

local rgb = sbus[4]

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
rgb:call("set_color", {"#eedd11", 10})

elseif dateTime:getHours() == 21 and dateTime:getMinutes() == 0 then
rgb:call("turn_off")

end
end

Tune color temperature based on the time of day

local rgb = sbus[79]

if dateTime:changed() then
if dateTime:getHours() == 16 and dateTime:getMinutes() == 0 then
-- afternoon, neutral white at 75%
rgb:call("set_temperature", {5000})
rgb:call("set_brightness", {75})

417 SBUS - RGB Controller

elseif dateTime:getHours() == 18 and dateTime:getMinutes() == 30 then
-- evening, warm white at 45%
rgb:call("set_temperature", {3000, 600})
rgb:call("set_brightness", {45, 600})

end
end

Activate an animation by id

local rgb = sbus[79]
local animation_id = 2

rgb:call("activate_animation", {id=animation_id})

Stop active animation

local rgb = sbus[79]
rgb:call("stop_animation")

Activate an animation by id when device state changes

local rgb = sbus[79]
local animation_id = 3

if wtp[3]:changedValue("state") then
rgb:call("activate_animation", {id=animation_id})

end

418 SBUS - TemperatureRegulator

SBUS - TemperatureRegulator
Temperature regulator notifies when desired temperature is reached in room. Can
be assigned to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Normally works in constant temperature mode only, but additional modes
(time_limited and schedule) can be unlocked when associated with Virtual
Thermostat.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

419 SBUS - TemperatureRegulator

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• target_temperature (number)

Desired setpoint temperature, which device will try to achieve.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_mode.current (string, read-only)

Regulator target temperature mode. Specifies if regulator works in constant

mode with one target temperature, time_limited mode with one temporary
target temperature or according to schedule in schedule mode with many target
temperatures in time, configured by user.

Parameter is read only, use commands to change target temperature mode!
Parameter cannot be schedule if thermostat doesnt have has_schedule label!
When not associated with Virtual Thermostat it will always work in constant
mode.

Available values: constant, schedule, time_limited. Default: constant

• target_temperature_mode.remaining_time (number, read-only)

420 SBUS - TemperatureRegulator

Remaining time until time_limited mode ends. Cannot be modified directly - use
commands.

Unit: minutes.

• target_temperature_miniumum (number)

Lower limit of the target temperature. Could not be greater than maximum.
Setting minimum value above target value, will also change target value to
minimum.

Unit: °C with one decimal number, multiplied by 10.

• target_temperature_maximum (number)

Upper limit of the target temperature. Could not be less than minimum. Setting
maximum below target, will also change target value to minimum. Unit: °C with
one decimal number, multiplied by 10.

• target_temperature_reached (boolean)

Controls device‘s algorithm state indicator (available on some regulators). eg
LED Diode. May be controlled by external algorithms or devices such as
Thermostat (when thermostat is active, indicator will blink)

• system_mode (string)

Indicates external system work mode. Used to display proper icon on the
regulator.

May only be changed if device is not assigned to thermostat (has not label
managed_by_thermostat).

Available values: off, heating, cooling. Default: heating

• keylock (string)

Device keylock state. Available values: on, off, unsupported

• confirm_time_mode (boolean, read-only)

Mainly for Mobile/Web App purposes. Indicates if time mode modal should be
displayed when changing thermostat temperature. Controlled by Virtual
Thermostat.

Commands
• set_target_temperature

Calls Temperature Regulator to change constant or time_limited mode target
temperature to the desired value.

If regulator works in time_limited mode it will change target temperature only,
not affecting remaining_time .

If regulator works in schedule mode it will change target temperature mode to
constant .

Argument:
target temperature in 0.1°C (number)

421 SBUS - TemperatureRegulator

• enable_constant_mode

Calls Temperature Regulator to change target temperature mode to constant .
When regulator is already in constant mode, it will change mode
target_temperature only.

NOTE: Cannot be executed when regulator is not associated with Thermostat.
Argument:
target temperature in 0.1°C (number)

• enable_time_limited_mode

Calls Temperature Regulator to change mode and target temperature mode to
time_limited for desired time.

When regulator is already in time_limited mode, it will change remaining_time

or/and target_temperature depending on payload.

NOTE: Cannot be executed when regulator is not associated with Thermostat.
Arguments:
packed arguments (table):

◦ remaining time in minutes (number)
◦ target temperature in 0.1°C (number)

• disable_time_limited_mode

Calls Temperature Regulator to disable time_limited and go back to previous
target temperature mode. When regulator is not in time_limited mode, it will do
nothing.

NOTE: Cannot be executed when regulator is not associated with Thermostat.

Examples
Raise target temperature between 15:00 and 20:00

if dateTime:changed() then
if dateTime:getHours() == 15 and dateTime:getMinutes() == 0 then
sbus[5]:call("set_target_temperature", 220)

elseif dateTime:getHours() == 20 and dateTime:getMinutes() == 0 then
sbus[5]:call("set_target_temperature", 190)

end
end

422 SBUS - TemperatureSensor

SBUS - TemperatureSensor
Temperature sensor. Measures temperature and sends measurement to central unit.
Can be assigned to virtual thermostat in web application as room or floor sensor.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

423 SBUS - TemperatureSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• temperature (number, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

• calibration (number)

Static point temperature calibration, used to adjust measurments.

Unit: °C with one decimal number, multiplied by 10.

424 SBUS - TwoStateInputSensor

SBUS - TwoStateInputSensor
Boolean input sensor checks input state and send it to central unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

425 SBUS - TwoStateInputSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• state (boolean, read-only)

State of the input.

• inverted (boolean)

Indicates if physical state of input compared to represented state in application
should be inverted.

426 SBUS - Blind Controller

SBUS - Blind Controller
Controller opens and closes a roller shade or tilt blind.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using sbus container eg. sbus[6] gives you access to device with ID 6.

SBUS devices have global scope and they are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

427 SBUS - Blind Controller

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• endpoint (number, read-only)

Unique (per physical device) identifier that help to distinguish same device types
in one physical device.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• target_opening (number)

Desired setpoint opening, which device will try to achieve.

NOTE: If device doesnt contain percent_opening_control label, target opening
is limited to 0%, 50% or 100% (only these three).

Unit: %.

• current_opening (number, read-only)

Current opening value.

Unit: %.

• target_tilt (number, optional)

Desired tilt position.

NOTE: Parameter is optional. Available when: percent_tilt_control label is
provided.

Unit: %.

• current_tilt (number, optional, read-only)

Current tilt position

NOTE: Parameter is optional. Available when: percent_tilt_control label is
provided.

Unit: %.

428 SBUS - Blind Controller

• window_covering_type (string)

Determines wheter tilt should be possible or not.

NOTE: Can be modified when: percent_tilt_control label is provided.

Available values to set: roller_shade, tilt_blind

• tilt_range (number, optional)

Determines tilt range.

NOTE: Parameter is optional. Available when: percent_tilt_control label is
provided. NOTE: Can be modified when: window_covering_type is equal to
tilt_blind .

Available values to set: 90, 180

Unit: angle (degrees).

• backlight_mode (string)

Buttons backlight mode. Available values: auto, fixed, off

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_brightness (number)

Buttons backlight brightness in percent.

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_idle_color (string)

HTML/Hex RGB representation of color when controller is in idle.

Example: #FF00FF

Note: Available when backlight is supported - check if has_backlight label is
provided.

• backlight_active_color (string)

HTML/Hex RGB representation of color when controller is active eg. motor is
working.

Example: #FFFF00

Note: Available when backlight is supported - check if has_backlight label is
provided.

Commands
• open

Opens a blind to specific value in percent passed in argument.

Argument:
opening percentage (number)

429 SBUS - Blind Controller

• up

Fully opens a blind.

• down

Fully closes a blind.

• stop

Immediately stops a blind motor.

• calibration

Starts blind calibration cycle.

• tilt

Calls tilt to the desired value.

Argument:
tilt percentage (number)

Examples
Open blind at sunrise and close at sunset

if event.type == "sunrise" then
sbus[3]:call("up")

elseif event.type == "sunset" then
sbus[3]:call("down")

end

Set blind to half-open at noon

if dateTime:changed() then
if dateTime:getHours() == 12 and dateTime:getMinutes() == 0 then
sbus[3]:call("open", 50)

end
end

430 AlarmSystem - Satel - AlarmZone

AlarmSystem - Satel - AlarmZone
Object from Satel central unit. Zone from Satel central unit representation.

Zone may be added by configuration read using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using alarm_system container eg. alarm_system[6] gives you access to device with
ID 6.
Alarm system devices have global scope and they are visible in all executions
contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

431 AlarmSystem - Satel - AlarmZone

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application. Example:
#FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (integer, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_version (string, read-only)

Satel central unit version.

• parent_id (integer, read-only)

ID of parent device which device belongs to.

• armed (boolean, read-only)

Indicates if zone is armed.

• violated (boolean, read-only)

Zone violation state.

Commands

• arm

Arm zone. (This command will send request to Satel central unit and armed state
will change only if central unit approves the command. So subsequent call to
getValue(”armed”) in script will most likely return previous armed state. Used
should check if ”armed” parameter changes by using changedValue(”armed”)
method in scripts)

Argument:
pin code used to arm zone (string)

• arm_in_mode

Arm zone in requested mode. (This command will send request to Satel central
unit and armed state will change only if central unit approves the command. So
subsequent call to getValue(”armed”) in script will most likely return previous
armed state. Used should check if ”armed” parameter changes by using
changedValue(”armed”) method in scripts)

432 AlarmSystem - Satel - AlarmZone

Argument:
packed arguments (table):

◦ pin_code - pin code used to arm zone (string)
◦ mode - Mode which will be used to arm zone (0-3). (integer). See Satel
documentation for differences between modes.

• disarm

Disarm zone. (This command will send request to Satel central unit and armed
state will change only if central unit approves the command. So subsequent call
to getValue(”armed”) in script will most likely return previous armed state. Used
should check if ”armed” parameter changes by using changedValue(”armed”)
method in scripts)

Argument:
pin code used to disarm zone (string)

Examples

Arm zone at 8:00PM and disarm at 7:00AM

local zone = alarm_system[3]

if dateTime:changed() then
if dateTime:getHours() == 20 and dateTime:getMinutes() == 0 then

zone:call("arm", "1234")
elseif dateTime:getHours() == 7 and dateTime:getMinutes() == 0 then

zone:call("disarm", "1234")
end

end

Arm zone in mode 1

alarm_system[3]:call("arm_in_mode", {pin_code="1234", mode=1})

433 AlarmSystem - Satel - TwoStateInputSensor

AlarmSystem - Satel - TwoStateInputSensor
Device from Satel central unit.

Boolean input sensor state (violation) is read from Satel central unit.

Device may be added by configuration read using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using alarm_system container eg. alarm_system[6] gives you access to device with
ID 6.
Alarm system devices have global scope and they are visible in all executions
contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

434 AlarmSystem - Satel - TwoStateInputSensor

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• sub_id (integer, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_version (string, read-only)

Satel central unit version.

• parent_id (integer, read-only)

ID of parent device which device belongs to.

• state (boolean, read-only)

State of the input. On/Off.

• inverted (boolean)

Indicates if physical state of input compared to represented state in application
should be inverted.

435 AlarmSystem - Satel - TwoStateOutput

AlarmSystem - Satel - TwoStateOutput
Device from Satel central unit.

Execution module that changes state depending on the control signal.

NOTE: Only some types of outputs can be controlled remotely (via Sinum). Check
Satel documentation for more information.

Device may be added by configuration read using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using alarm_system container eg. alarm_system[6] gives you access to device with
ID 6.
Alarm system devices have global scope and they are visible in all executions
contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

436 AlarmSystem - Satel - TwoStateOutput

• tags (array, read-only)

Collection of tags assigned to device.

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application (like
#a800b0)

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• software_status (string, read-only)

Current device software update status: up_to_date , update_available ,
recovery , pending , downloading , updating

• sub_id (integer, read-only)

Unique (per device container) identifier that helps to distinguish same device
types in one container.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_version (string, read-only)

Satel central unit version.

• parent_id (integer, read-only)

ID of parent device which device belongs to.

• state (boolean, read-only)

State of the output. On/Off.

Commands

• turn_on

Turns on output.

Argument:
pin code used to turn on output (string)

• turn_off

Turns off output.

Argument:
pin code used to turn off output (string)

• toggle

Changes output to opposite state.

437 AlarmSystem - Satel - TwoStateOutput

Argument:
pin code used to toggle output state (string)

Examples

Set output state based on alarm input sensor violated state

local input = alarm_system[1]
local output = alarm_system[2]

if input:changedValue("state") then
if input:getValue("state") then

output:call("turn_on", "1234")
else

output:call("turn_off", "1234")
end

end

438 Lora - FloodSensor

Lora - FloodSensor
Battery powered, flood sensor. Detects water leak on flat surfaces.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using lora container eg. lora[6] gives you access to device with ID 6.

Lora devices have global scope and they are visible in all executions contexts.

Note: Lora devices are available only in Sinum Pro.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

439 Lora - FloodSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• eui (string, read-only)

Lora 64-bit device EUI (Extended Unique Identifier).

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• flood_detected (boolean, read-only)

A flag representing the detection of flood / water leak by the sensor.

Examples
Catching alarms

if lora[1]:changedValue("flood_detected") and lora[1]:getValue("flood_detected")
then

print("Sensor detected water leak!!!")
notify:warning("Water leak!", "Water leak detected in toilet!", {1, 3})

end

440 Lora - FloodSensor

Close the valve and turn on siren on water leak

valve = wtp[1]
siren = wtp[2]
floodSensor = lora[1]

if floodSensor:changedValue("flood_detected") and
floodSensor:getValue("flood_detected")

then
valve:call("turn_off")
siren:call("turn_on")

end

441 Lora - HumiditySensor

Lora - HumiditySensor
Battery powered humidity sensor. Measures humidity and sends measurement to
central unit.

Sensors measure humidity only every few minutes to save battery. Can be assigned
to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using lora container eg. lora[6] gives you access to device with ID 6.

Lora devices have global scope and they are visible in all executions contexts.

Note: Lora devices are available only in Sinum Pro.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

442 Lora - HumiditySensor

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• eui (string, read-only)

Lora 64-bit device EUI (Extended Unique Identifier).

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• humidity (number, read-only)

Sensed humidity value.

Unit: rH% with one decimal number, multiplied by 10.

443 Lora - OpeningSensor

Lora - OpeningSensor
Battery powered opening sensor. Checks whether window or door is open. Based on
that information system can do some action, for example, turn off heating in that
room.

Can be assigned to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using lora container eg. lora[6] gives you access to device with ID 6.

Lora devices have global scope and they are visible in all executions contexts.

Note: Lora devices are available only in Sinum Pro.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

444 Lora - OpeningSensor

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• eui (string, read-only)

Lora 64-bit device EUI (Extended Unique Identifier).

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• open (boolean, read-only)

Opening sensor state. Open/Closed.

Examples
Catch open and close events

if lora[12]:changedValue("open") then
if lora[12]:getValue("open") then
print("The window is now open!")

else
print("The window is now closed!")

end

445 Lora - OpeningSensor

end

446 Lora - Relay

Lora - Relay
Execution module that changes state depending on the control signal.

Relay can be assigned to virtual thermostat in web application.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using lora container eg. lora[6] gives you access to wireless device with ID 6.

Lora devices have global scope and they are visible in all executions contexts.

Note: Lora devices are available only in Sinum Pro.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (integer, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (array, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (array, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (array, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

447 Lora - Relay

• room_id (integer, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (integer, read-only)

Unique network address.

• signal (integer, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• eui (string, read-only)

Lora 64-bit device EUI (Extended Unique Identifier).

• state (boolean)

State of the output. On/Off.

• inverted (boolean)

Indicates if should invert physical state of relay compared to represented state in
application.

Commands
• turn_on

Turns on relay output.

• turn_off

Turns off relay output.

• toggle

Changes relay output to opposite.

448 Lora - Relay

Examples
Turn on relay between 19:00 and 21:00

if dateTime:changed() then
if dateTime:getHours() == 19 and dateTime:getMinutes() == 0 then
lora[4]:call("turn_on")

elseif dateTime:getHours() == 21 and dateTime:getMinutes() == 0 then
lora[4]:call("turn_off")

end
end

Turn on the light for 5 minutes when motion detected

if lora[7]:changedValue("motion_detected") then
lora[11]:setValue("state", true)
lora[11]:setValueAfter("state", false, 5 * 60)

end

449 Lora - TemperatureSensor

Lora - TemperatureSensor
Measures temperature and sends measurement to central unit.

Temperature sensors measure temperature only every few minutes to save battery.

Can be assigned to virtual thermostat in web application as room or floor sensor.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using lora container eg. lora[6] gives you access to device with ID 6.

Lora devices have global scope and they are visible in all executions contexts.

Note: Lora devices are available only in Sinum Pro.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

450 Lora - TemperatureSensor

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• eui (string, read-only)

Lora 64-bit device EUI (Extended Unique Identifier).

• battery (number, read-only)

Battery status.

Unit: %.

Note: Parameter is optional. Available when device is battery powered - check if
battery_powered label is provided.

• temperature (number, read-only)

Sensed temperature value.

Unit: °C with one decimal number, multiplied by 10.

• calibration (number)

Static point temperature calibration, used to adjust measurments.

Unit: °C with one decimal number, multiplied by 10.

451 Lora - TwoStateInputSensor

Lora - TwoStateInputSensor
Boolean input sensor checks input state and send it to central unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using lora container eg. lora[6] gives you access to device with ID 6.

Lora devices have global scope and they are visible in all executions contexts.

Note: Lora devices are available only in Sinum Pro.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

452 Lora - TwoStateInputSensor

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• address (number, read-only)

Unique network address.

• signal (number, read-only)

Signal value.

Unit: %.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• software_version (string, read-only)

Software name and version description.

• eui (string, read-only)

Lora 64-bit device EUI (Extended Unique Identifier).

• state (boolean, read-only)

State of the input.

• inverted (boolean)

Indicates if physical state of input compared to represented state in application
should be inverted.

453 System Module - WTP, SBus or Modbus Extenders

System Module - WTP, SBus or Modbus Extenders
Device extends signal range of wireless WTP devices, extends SBus communication
line or Modbus RTU communication line. It passes all communication with
WTP/SBus/Modbus devices to Sinum Central Unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using system_module container eg. system_module[2] gives you access to module
with ID 2.
System modules have global scope and the are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of device. Cannot contain special characters except : , ; .

- _

• icon (string)

Name of the icon associated with device.

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• status (string, read-only)

Current device connection status: online, offline, unknown, service

• messages (table, read-only)

Collection of device specific messages. Contains device error/warning details.

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

454 System Module - WTP, SBus or Modbus Extenders

• labels (table, read-only)

Collection of device specific labels. Contains device specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to device.

• software_status (string, read-only)

Current device software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• room_id (number, read-only, optional, nilable)

ID of room with which device is associated or nil otherwise.

• visible (boolean, read-only)

Indicates if device is enabled/viable to use.

• color (string)

HTML/Hex RGB representation of device widget color in application.

Example: #FFFF00

• uuid (string, read-only)

Unique identifier of system module, used for communication.

• enabled (boolean)

Indicates if device is enabled. Disabled extender disables communication with all
WTP devices connected to it.

• software_version (string, read-only)

Current software version.

• transceiver_uuid (number, read-only)

Unique indentifier of transceiver.

• link_latency (number, read-only)

Average communication latency in last 10 minutes.

• latest_link_latency (number, read-only)

Latest reported communication latency.

• network_name (string, read-only)

Name of WiFi network extender is connected to.

• network_signal (int, read-only)

Value from 0 to 100 indicating how strong WiFi signal is.

• network_channel (int, read-only)

WiFi network channel.

455 System Module - WTP, SBus or Modbus Extenders

• ethernet_connected (boolean, read-only)

Indicates if extender has ethernet cable connected.

Note: Parameter is optional. Available when device has ethernet - check if
has_ethernet label is provided.

456 System Module - Lora Gateway

System Module - Lora Gateway
Responsible for communication with Lora devices connected to Sinum Central Unit.

Device may be added by registration using web application. Can be edited or
deleted via REST API or a web application served through the central unit server.

Property modification is possible via REST API, web app or directly from scripts
using system_module container eg. system_module[2] gives you access to module
with ID 2.
System modules have global scope and the are visible in all executions contexts.

Note: Lora devices are available only in Sinum Pro.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of module. Cannot contain special characters except : , ; .

- _

• icon (string)

Name of the icon associated with module.

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• status (string, read-only)

Current module connection status: online, offline, unknown, service

• messages (table, read-only)

Collection of module specific messages. Contains module error/warning details.

• labels (table, read-only)

https://app.swaggerhub.com/apis-docs/tech-controllers/e-home-main

457 System Module - Lora Gateway

Collection of module specific labels. Contains module specification and additional
flags.

• tags (table, read-only)

Collection of tags assigned to module.

• software_status (string, read-only)

Current module software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• room_id (number, read-only, optional, nilable)

ID of room with which module is associated or nil otherwise.

• visible (boolean, read-only)

Indicates if module is enabled/viable to use.

• color (string)

HTML/Hex RGB representation of module widget color in application.

Example: #FFFF00

• uuid (string, read-only)

Unique identifier of system module, used for communication.

• enabled (boolean)

Indicates if module is enabled. Disabled transceiver disables communication with
all devices of certain type connected to Sinum Central Unit.

• software_version (string, read-only)

Current software version.

458 System Module - WTP, SBus or Modbus Transceiver

System Module - WTP, SBus or Modbus Transceiver
Representation of built-in module which is responsible for communication with
certain type (WTP, SBus or Modbus) of devices connected to Sinum Central Unit.

This system module cannot be added or removed by user.

Property modification is possible via REST API, web app or directly from scripts
using system_module container eg. system_module[2] gives you access to module
with ID 2.
System modules have global scope and the are visible in all executions contexts.

Properties
Properties direct access is not allowed. You can get or set values using setValue ,
getValue methods.

Attempting to reference a nonexistent object, retrieve a nonexistent object property,
or set the wrong value type will result in a script error.

Available Properties

• id (number, read-only)

Unique object identifier.

• name (string)

User defined name of module. Cannot contain special characters except : , ; .

- _

• icon (string)

Name of the icon associated with module.

• type (string, read-only)

Device type description, based on role and functionality.

• variant (string, read-only)

Defines the more detailed functionality of the device.

• class (string, read-only)

Device class description, based on communication type, manufacturer etc.

• status (string, read-only)

Current module connection status: online, offline, unknown, service

• messages (table, read-only)

Collection of module specific messages. Contains module error/warning details.

• labels (table, read-only)

Collection of module specific labels. Contains module specification and additional
flags.

459 System Module - WTP, SBus or Modbus Transceiver

• tags (table, read-only)

Collection of tags assigned to module.

• software_status (string, read-only)

Current module software update status: up_to_date, update_available, recovery,
pending, downloading, updating

• room_id (number, read-only, optional, nilable)

ID of room with which module is associated or nil otherwise.

• visible (boolean, read-only)

Indicates if module is enabled/viable to use.

• color (string)

HTML/Hex RGB representation of module widget color in application. Example:
#FFFF00

• uuid (string, read-only)

Unique identifier of system module, used for communication.

• enabled (boolean)

Indicates if module is enabled. Disabled transceiver disables communication with
all devices of certain type connected to Sinum Central Unit.

• software_version (string, read-only)

Current software version.

• transceiver_uuid (number, read-only)

Unique indentifier of transceiver connected to module.

• link_latency (number, read-only)

Average communication latency in last 10 minutes.

• latest_link_latency (number, read-only)

Latest reported communication latency.

	Getting started
	Events
	Properties
	Available types
	Examples
	Check if device parameter changed
	Catch scene activation or failure
	Catch automation fail
	Check if a minute elapsed
	Check if a timer elapsed
	Catch sunrise event
	Catch sunset event

	Devices
	Properties
	Methods
	Commands
	Examples
	Check if any property changed
	Check if specific property changed
	Get value of a device property
	Set value of a device property
	Set more than one property at once with chained calls
	Set value of device property after certain time
	Call device commands

	Scenes
	Properties
	Methods
	Commands
	Examples
	Activate a scene at sunrise
	Change scene properties with chained calls
	Sample scenes: "leaving home" and "returning home"

	Automations
	Properties
	Methods
	Examples
	Check if automation failed
	Change automation properties

	Rooms
	Properties
	Methods
	Examples
	Change room properties
	Turn on all devices in room
	Turn on all devices in a room which have tag 'light'
	List all devices with tag 'regulator' in a room

	Floors
	Properties
	Methods
	Examples
	Change floor properties

	DateTime
	Methods
	Examples
	Perform an action every minute
	Get current time
	Perform actions on monday at 7:30
	Perform an action every minute between 7:30 and 10:00 only at weekends

	Variables
	Types
	Methods
	Examples
	Set variable values
	Count failed scenes per day

	Timers
	Methods
	Examples
	Start timer if it was not started before.
	Start timer in stopwatch mode
	Start timer in count-down timer mode for 5 seconds
	Start timer in count-down timer mode for 2 hours
	Count time between events
	Catch timer elapse

	Statistics
	Methods
	Units
	Examples
	Log temperature once per minute

	Sunrise and Sunset
	Methods
	Examples
	Get time of sunrise
	Catch sunrise event
	Catch sunset event
	Do an action 2 hours after sunrise
	Defer action for device to 2 hours after sunrise

	System
	Methods
	Examples
	Print all

	Weather
	Properties
	Methods
	Weather Object
	Methods
	Examples
	Read weather data on update
	Close the blind when there is strong wind and rain
	Signal alarm when there is strong wind expected in next 3–5 hours

	Notifications
	Methods
	Examples
	Notify user #1 of boiler state changes
	Notify users #1 and #3 of poor air quality
	Notify everyone when there is no connection with pellet boiler controller

	Modbus Client
	Methods
	Examples
	Read data from a modbus device
	Write data to a holding register and a coil
	Write multiple values to holding registers and coils
	Turn on air conditioner using modbus protocol
	Turn off air conditioner using modbus protocol
	Handle asynchronous read request
	Handle asynchronous write request
	Handle asynchronous request failure

	Libraries - JSON
	Methods
	Example

	Libraries - XML
	Methods
	Example

	Libraries - hash
	Methods
	Example

	Utilities
	Functions
	utils:printf(fmt,...)
	utils:ternary(condition,trueValue,falseValue)
	utils:integrateProperty(property,devices)

	Deprecated methods
	utils:stair_light(devices)
	utils:integrate_property(property,devices)

	Utilities - colorspace conversion
	Representation
	utils.color:philips_hue_normalize_hsb(hue,saturation,brightness)
	utils.color:normalize_rgb888(r,g,b)
	utils.color:clamp_rgb(r,g,b)
	utils.color:html(r,g,b)

	Gamma correction
	utils.color:gamma(gamma,channel)
	utils.color:gamma3(gamma,channel1,channel2,channel3)
	utils.color:degamma(gamma,channelp)
	utils.color:degamma3(gamma,channel1p,channel2p,channel3p)

	Color space conversion
	utils.color:hsv_to_rgb(hue,saturation,value)
	utils.color:rgb_to_hsv(r,g,b)
	utils.color:lin_sRGB_to_CIEXYZ(r,g,b)
	utils.color:CIEXYZ_to_lin_sRGB(X,Y,Z)
	utils.color:CIEXYZ_to_CIExyY(X,Y,Z)
	utils.color:CIExyY_to_CIEXYZ(x,y,Y)

	Utilities - ctype
	Functions
	utils.ctype:isalnum(c)
	utils.ctype:isalpha(c)
	utils.ctype:isascii(c)
	utils.ctype:isblank(c)
	utils.ctype:iscntrl(c)
	utils.ctype:isdigit(c)
	utils.ctype:isgraph(c)
	utils.ctype:islower(c)
	utils.ctype:isprint(c)
	utils.ctype:ispunct(c)
	utils.ctype:isspace(c)
	utils.ctype:isupper(c)
	utils.ctype:isxdigit(c)

	Utilities - math
	Functions
	utils.math:scale(oldMin,oldMax,newMin,newMax,value)
	utils.math:bounds(min,max,value)
	utils.math:dot(vec1,vec2)

	Utilities - sequences
	Functions
	utils.seq:flat(sequence)
	utils.seq:fromStr(str)
	utils.table:join(sequence,separator)
	utils.seq:slice(sequence,from,to)
	utils.seq:toReversed(sequence)

	Utilities - strings
	Functions
	utils.str:ltrim(str)
	utils.str:rtrim(str)
	utils.str:trim(str)
	utils.str:lpad(str,length,char)
	utils.str:rpad(str,length,char)
	utils.str:contains(str,substr)
	utils.str:split(str,delimiter)
	utils.str:startsWith(str,prefix)
	utils.str:endsWith(str,suffix)
	utils.str:randomUUID()
	utils.str:random(length)
	utils.str:truncate(string,maxLength,suffix)

	Utilities - tables
	Functions
	utils.table:copy(table)
	utils.table:hasKey(table,key)
	utils.table:indexOf(table,value)
	utils.table:reduce(table,callback,initialValue)

	Iterative functions - intro
	Iterative functions
	utils.table:every(table,callback)
	utils.table:filter(table,callback)
	utils.table:find(table,callback)
	utils.table:forEach(table,callback)
	utils.table:group(table,callback)
	utils.table:map(table,callback)
	utils.table:some(table,callback)

	Utilities - time
	Methods
	utils.time:fromISO(iso)
	utils.time:toISO(unix)
	utils.time:toTimeOfDay(timeString)

	Utilities - URL manipulation
	Percent-encoding
	utils.url:encode(str)
	utils.url:encodePlus(str)
	utils.url:decode(str)
	utils.url:decodePlus(str)

	URL parsing
	utils.url:getScheme(url)
	utils.url:getHost(url)
	utils.url:getPort(url,default)
	utils.url:getPath(url)
	utils.url:getQueryParams(url)
	utils.url:stripQueryParams(url)

	HTTP Client
	Properties
	Methods
	Examples
	Send GET request to custom.server.com at 19:00
	POST data to custom.server.com at sunrise
	POST data at sunrise with default values
	Handle received response
	Handle request failure
	Handle response using a callback

	HTTP Server
	Properties
	Methods

	HttpServerRequest
	Methods

	HttpServerResponse
	Methods
	Examples
	Handle requests
	Handle requests using local functions
	Handle url template arguments
	Handle url query parameters
	Handle json body in request and response

	ICMP Ping
	Methods
	Examples
	Ping local IP address at 19:00
	Ping two remote hosts every minute
	Handle response with a callback

	Mqtt Client
	Properties
	Methods
	Examples
	Receive message on subscribed topic.
	Publish message on topic "greetings"
	Catch connect and disconnect
	Catch subscription establish and publish data read request

	Wake On Lan
	Properties
	Methods
	Examples
	Wake up devices at 19:00

	EnergyCenter - FlowMonitor
	Methods
	Properties
	Examples
	Turn off relay when you start importing power from grid
	Turn on relay if there is pv production and it is being exported to grid

	EnergyCenter - EnergyPrices
	Methods
	Properties

	EnergyCenter - EnergyStorage
	Methods
	Properties
	Examples
	Turn off relay when battery is discharging and level drops to 20%

	EnergyCenter - EnergyConsumption
	Methods
	Properties

	EnergyCenter - EnergyProduction
	Methods
	Properties

	WTP - AQSensor
	Properties

	WTP - BlindController
	Properties
	Commands
	Examples
	Open blind at sunrise and close at sunset
	Set blind to half-open at noon

	WTP - Button
	Properties
	Examples
	Turn on lights when button clicked once
	Close blinds when button held for 3 seconds

	WTP - CO2Sensor
	Properties

	WTP - Dimmer
	Properties
	Commands
	Examples
	Turn on light at 19:00 and turn off at 21:00
	Set the light intensity to 75% during 2 minutes
	Begin dimming on button hold start and finish immediately after release (simple version)
	Begin dimming on button hold start and finish immediately after release (advanced version)

	WTP - EnergyMeter
	Properties
	Commands
	Examples
	Send notification when active power usage rises above 2.5kW

	WTP - FloodSensor
	Properties
	Examples
	Catching alarms
	Close the valve and turn on siren on water leak

	WTP - HumiditySensor
	Properties

	WTP - IAQSensor
	Properties

	WTP - LightSensor
	Properties

	WTP - MotionSensor
	Properties
	Commands
	Examples
	Catching motion events
	Delayed action
	Enable motion detection at sunset and disable it at sunrise
	Enable a light for 5 minutes on motion detection
	Reconfigure thermostat when motion detected

	WTP - OpeningSensor
	Properties
	Examples
	Catch open and close events

	WTP - PressureSensor
	Properties

	WTP - RadiatorActuator
	Properties
	Commands
	Examples
	Regulate valve based on room temperature

	WTP - Relay
	Properties
	Commands
	Examples
	Turn relay on between 19:00 and 21:00
	Turn on the light for 5 minutes when motion detected

	WTP - RGB Controller
	Properties
	Commands
	Examples
	Turn on light to specific color at 19:00 and turn off at 21:00
	Tune color temperature based on the time of day
	Activate an animation by id
	Stop active animation
	Activate an animation by id when device state changes

	WTP - SmokeSensor
	Properties
	Commands
	Examples
	Catching different alarms
	Locking and unlocking
	Reacting to smoke

	WTP - TemperatureRegulator
	Properties
	Commands
	Examples
	Raise target temperature between 15:00 and 20:00

	WTP - TemperatureSensor
	Properties

	WTP - Throttle
	Properties
	Commands
	Examples
	Synchronize throttle with radiator actuator

	WTP - TwoStateInputSensor
	Properties

	WTP - FanControl
	Properties
	Commands

	TECH - CommonHeatBuffer
	Properties

	TECH - CH PumpAdditional
	Properties

	TECH - CommonDHW
	Properties
	Examples
	Set target temperature to 45 in summer mode and 55 in other modes

	TECH - DHW PumpAdditional
	Properties

	TECH - FloorPumpAdditional
	Properties

	TECH - HeatPump
	Properties
	Commands

	TECH - HumiditySensor
	Properties

	TECH - PelletBoiler
	Properties
	Examples
	Stop pellet boiler when all thermostats reach their target temperatures

	TECH - PelletCHMain
	Properties
	Examples
	Change modes based on current season

	TECH - ProtectPumpAdditional
	Properties

	TECH - RelayAdditional
	Properties

	TECH - Relay
	Properties
	Commands
	Examples
	Turn on relay between 19:00 and 21:00

	TECH - TemperatureRegulator
	Properties
	Commands
	Examples
	Raise target temperature between 15:00 and 20:00

	TECH - TemperatureSensor
	Properties

	TECH - TwoStateInputSensor
	Properties

	TECH - Valve
	Properties
	Examples
	Close valve if thermostat reached target temperature

	TECH - Ventilation
	Properties
	Commands

	Modbus - Alpha-Innotec - Heat Pump
	Properties

	Modbus - Alpha-Innotec - Main DHW
	Properties

	Modbus - Alpha Innotec - Temperature Sensor
	Properties

	Modbus - Eastron SDM630 - Energy Meter
	Properties

	Modbus - EcoAir - Heat Pump
	Properties
	Commands

	Modbus - EcoAir - Main DHW
	Properties
	Examples
	Set target temperature to 45 in cooling work mode and 55 in other

	Modbus - EcoGeo - Heat Pump
	Properties
	Commands

	Modbus - EcoGeo - Main DHW
	Properties
	Examples
	Set target temperature to 45 in cooling work mode and 55 in other

	Modbus - Galmet Prima - Heat Pump
	Properties

	Modbus - Galmet Prima - Main DHW
	Properties
	Examples
	Set target temperature to 45 in cooling work mode and 55 in other

	Modbus - Galmet Prima - Temperature Sensor
	Properties

	Modbus - GoodWe MT/SMT - Inverter
	Properties
	Commands

	Modbus - GoodWe SDT/MS/DNS/XS - Inverter
	Properties
	Commands

	Modbus - Heatcomp - Heat Pump
	Properties

	Modbus - Heatcomp - Main DHW
	Properties
	Examples
	Set target temperature to 45 in cooling work mode and 55 in other

	Modbus - HeatEco - Heat Pump
	Properties

	Modbus - HeatEco - Main DHW
	Properties

	Modbus - Huawei SUN2000 - Battery
	Properties

	Modbus - Huawei SUN2000 - Energy Meter
	Properties

	Modbus - Huawei SUN2000 - Inverter
	Properties
	Commands

	Modbus - Itho - Heat Pump
	Properties

	Modbus - Itho - Main DHW
	Properties

	Modbus - Itho - Temperature Sensor
	Properties

	Modbus - Kaisai KHC - Heat Pump
	Properties

	Modbus - Kaisai KHC - Main DHW
	Properties
	Examples
	Set target temperature to 45 in cooling work mode and 55 in other

	Modbus - Kaisai KHC - Temperature Sensor
	Properties

	Modbus - Mitsubishi Ecodan - Heat Pump
	Properties

	Modbus - Mitsubishi Ecodan - Main DHW
	Properties

	Modbus - Remeha Elga ACE - Heat Pump
	Properties
	Commands

	Modbus - Remeha Elga ACE - Temperature Sensor
	Properties

	Modbus - SolarEdge with MTTP Extension Model - Inverter
	Properties

	Modbus - SolarEdge - Inverter
	Properties

	Modbus - Solax X1 - Battery
	Properties
	Commands
	Examples
	Turn on battery charging with 1kW for 1 hour at 1:00PM

	Modbus - Solax X1 - Inverter
	Properties

	Modbus - Solax X3 - Battery
	Properties
	Commands
	Examples
	Turn on battery charging with 1kW for 1 hour at 1:00PM

	Modbus - Solax X3 - Inverter
	Properties

	Modbus - Solis - Inverter
	Properties

	Modbus - P1 Energy Meter
	Properties

	Virtual - Thermostat
	Properties
	Commands
	Examples
	Raise target temperature between 15:00 and 20:00
	Raise target temperature on saturday and lower on monday
	Enable schedule work monday to friday and disable during weekends
	Reconfigure thermostat when motion sensor triggers
	Change thermostat modes based on temperature

	Virtual - Thermostat Output Group
	Properties
	Commands
	Examples
	Check when heat/cooling is requested
	Disable between 15:00 and 20:00

	Virtual - Relay Integrator
	Properties
	Examples
	Turn on all assigned relays when motion sensor triggers

	Virtual - Blind Controller Integrator
	Properties
	Examples
	Open all assigned blinds at sunrise and close at sunset
	Set all assigned blinds to half-open at noon
	Catch actions starting and ending

	Virtual - CustomDevice
	Methods
	Properties
	Commands
	User specific commands

	Virtual - CustomDevice - Lua code
	Available callbacks

	Virtual - CustomDevice - Controls
	Methods

	Virtual - CustomDevice - Controls - Text
	Properties
	Commands
	Lua Callback signature

	Virtual - CustomDevice - Controls - Button
	Properties
	Commands
	Lua Callback signature

	Virtual - CustomDevice - Controls - Switcher
	Properties
	Commands
	Lua Callback signature

	Virtual - CustomDevice - Controls - Progress Bar
	Properties
	Commands
	Lua Callback signature

	Virtual - CustomDevice - Controls - Slider
	Properties
	Commands
	Lua Callback signature

	Virtual - CustomDevice - Controls - ComboBox
	Properties
	Commands
	Lua Callback signature

	Examples
	Using callbacks
	Change element values/call commands from scene or automation
	Call custom commands from scene or automation
	Infinite event loops / callback propagation stop

	Virtual - Heat Pump Manager
	Properties
	Commands
	Examples
	Raise heating target temperature between 15:00 and 20:00
	Raise cooling target temperature on saturday and lower it on monday
	Disable manager between June and August

	Virtual - Gate
	Properties
	Commands
	Examples
	Open gates when smoke sensor triggers
	Close a gate 10 minutes after opening it

	Virtual - Wicket
	Properties
	Commands
	Examples
	Unlock wicket when smoke sensor detects smoke

	SBUS - AnalogInput
	Properties

	SBUS - Button
	Properties
	Examples
	Turn on lights when button clicked once
	Close blinds when button held for 3 seconds

	SBUS - CO2Sensor
	Properties

	SBUS - Dimmer
	Properties
	Commands
	Examples
	Turn on light at 19:00 and turn off at 21:00
	Set the light intensity to 75% during 2 minutes
	Dim or brighten lights while button is pressed (simple version)
	Dim or brighten lights while button is pressed (advanced version)

	SBUS - HumiditySensor
	Properties

	SBUS - IAQSensor
	Properties

	SBUS - LightSensor
	Properties

	SBUS - MotionSensor
	Properties
	Commands
	Examples
	Catching motion events
	Delayed action
	Enable motion detection at sunset and disable it at sunrise
	Enable a light for 5 minutes on motion detection
	Reconfigure thermostat when motion detected

	SBUS - PressureSensor
	Properties

	SBUS - Relay
	Properties
	Commands
	Examples
	Turn on relay between 19:00 and 21:00

	SBUS - RGB Controller
	Properties
	Commands
	Examples
	Turn on light to specific color at 7:00 and turn off at 8:00
	Tune color temperature based on the time of day
	Activate an animation by id
	Stop active animation
	Activate an animation by id when device state changes

	SBUS - TemperatureRegulator
	Properties
	Commands
	Examples
	Raise target temperature between 15:00 and 20:00

	SBUS - TemperatureSensor
	Properties

	SBUS - TwoStateInputSensor
	Properties

	SBUS - Blind Controller
	Properties
	Commands
	Examples
	Open blind at sunrise and close at sunset
	Set blind to half-open at noon

	AlarmSystem - Satel - AlarmZone
	Properties
	Commands

	Examples
	Arm zone at 8:00PM and disarm at 7:00AM
	Arm zone in mode 1

	AlarmSystem - Satel - TwoStateInputSensor
	Properties

	AlarmSystem - Satel - TwoStateOutput
	Properties
	Commands

	Examples
	Set output state based on alarm input sensor violated state

	Lora - FloodSensor
	Properties
	Examples
	Catching alarms
	Close the valve and turn on siren on water leak

	Lora - HumiditySensor
	Properties

	Lora - OpeningSensor
	Properties
	Examples
	Catch open and close events

	Lora - Relay
	Properties
	Commands
	Examples
	Turn on relay between 19:00 and 21:00
	Turn on the light for 5 minutes when motion detected

	Lora - TemperatureSensor
	Properties

	Lora - TwoStateInputSensor
	Properties

	System Module - WTP, SBus or Modbus Extenders
	Properties

	System Module - Lora Gateway
	Properties

	System Module - WTP, SBus or Modbus Transceiver
	Properties

